	Hidden Mar	KOV IVIODEIS	s (HIVIIVIS)		•
Some	theory, some	games, so	ome applic	ations	•
Mike Hallett					
hallett.mike.t@am	ail.com				
http://mikehallett.s	cience				
				$\Pr[X Y] = \frac{\Pr[Y X] \cdot \Pr[X]}{\Pr[Y]}$	
				$\begin{array}{c} x_{1} + a \\ x_{1} + a \\ y_{1} + a \\ y_{1} + a \end{array} = \begin{array}{c} x_{1} = \max_{2} x_{1} + \beta \\ x_{1} - 1 + a \\ y_{1} - 1 + a \end{array}$	
	(VSIR		$E_{p} = K m n e^{-\lambda S}$	(x)
			Xu	E max 7 X i-1,j + a x i x - y - 1 X ij - 1 + a	E
				$ \begin{array}{c} X_{ij-1} + * X_{ij} = max_{ij} X_{i-ij} + * \\ K_{R} = (R) (SV(RS) \\ * - u_{R} \\ \hline X = - \mu_{0} \\ \hline X = - \mu_{0} \\ \end{array} $	
				$t = \frac{\sqrt{1-1}}{s/\sqrt{n}}$	
				•	
The full Course					
					•
🦅					
Lecture 14					

Plan for the day

<u> </u>	<u></u>
1. Markov Models (15 mins)	
Ho one of the top 3 concepts/tools	
for all life scientists.	SE
· · · · · · · · · · · · · · · · · · ·	
	Andrei Andreyevich Markov 1856-1922
	Mathematician
	Models of stochastic processes
2. Prokaryotic gene finding (10 mir	ns) · · · · · · · · · · · ·
3. Hidden Markov Models (15 min	s)
• • • • • 🕇 • • • • • • • • • • • • •	
If would be more appropriate to call	
them "partially hidden" or "noisely	
observable", but that's awkword.	
	neomatime /
	Hidden Andrei Andreyevich Markov
1 Puzzles eversises and points	of reflection (5 mins)
4. Puzzies, exercises, and points of	

	Vodels	· · · · · · · · · · · ·	· · · · · · · · ·
A Markov Mc	del consists of 3 things		
(1) A set c	f states		
· · · (0) Tranai			
	ion probabilities between	States	
(3) Probal	pilities for the starting stat	es 7/	
			8
		- h h h h h ((h h)), h h	
oring Example	<u></u>		
	() K		
	<u>V.</u>		
	· · · · · · · · · · · · ·		
	Prob(starting in $X = 1/5$	Prob(starting in V)=1	
· · · · · · ·	· · · · · · · · · · · · ·		

1. Markov Models
A Markov Model consists of 3 things
$(1) \Lambda$ set of states.
(2) Transition probabilities between states
(3) Probabilities for the starting states
7/8
Boring Example
$(\mathbf{x}_{1}, \mathbf{y}_{2}, \mathbf{x}_{3}, x$
$V_{\rm e}$
\cdot
12
Prob(starting in X)=4/5 Prob(starting in X)=1/5
$= 100 (\text{ starting in } \times) = 4/3 $
× × × × × × × × × × × × × × × × × × ×
1
We can generate "walks" through the Markov model by choosing random
numbers between 0 and 1. Suppose the random number is O.L.
state: X

. Markov Models		•
A Markov Model consists of 3	things	
(1) A set of states		
(0) Trees it is a local difference in the local differ	· · · · · · · · · · · · · · · · · · ·	•
(∠) Transition probabilities I		•
(3) Probabilities for the star	ting states	•
Boring Example	······································	
		•
· · · · · · · · · · · · · · · · · · ·	12	•
1 - 1 - 1 - 1 - 1 - 1 (X)		
		•
(1)	· · · · · · · · · · · · · · · · · · ·	•
	· · · · · · · · · · · · · · · · · · ·	
		•
12		•
Prob(starting in	n X)=4/5 Prob(starting in Y)=1/5	•
	, , , , , , , , , , , , , , , , , , ,	•
We are in state X. We picl	k a random number to determine where next. ,'	•
stay in 2	K transit to Y	•
0	<u>y</u>	•
	new random number 0.8	
	le l	•
	state YV	

I. Markov Models	· · · · · · · · · · · · · · · · · · ·
A Markov Model consists of 3 things	
(1) A set of states	
(2) Transition probabilities between	States
(3) Probabilities for the starting state	\$\$ · · · · · · · · · · · · · · · · · ·
	7/
Boring Example	· · · · · · · · · · · · · · · · · · ·
	2
	· · · · · · · · · · · · · · · · · · ·
	18
· · · · · · · · · · · /2.	
Prob(starting in X)=4/5	Prob(starting in Y)=1/5
We repeat for as long as we want	each time nicking a random number
and using the transition probabilitie	s to dictate the next step in our walk,
	· · · · · · · · · · · · · · · · · · ·
	TI. VUYYXYYV
	STOPE: ALLINA LA
	A nice set of animations

. Markov Models	
A Markov Model consists of 3 things	
A Markov Model consists of 5 things	
(1) A set of states	A C G T · · · · · · · · · · ·
	7, 0, 0, 1
(2) Transition probabilities between states	
(3) Probabilities for the starting states	Prob(start in A) = 1/4
	Prob(start in T) = 1/4
	Prob(start in C) = 0
	Prob(start in G) =
Δ	Τ)
0.2	
· · · · · · · · · · · · · · · · · · ·	G
The transition probabilities must	sum to 1 for each node.
(otherwise they wouldn't be pro	babilities.)
Prob(Heads) + Prob(Tails) =	1
Prob(win lottery) + Prob(don't win	r lottery = 1

1. Markov Models	· · · · · · · · · · · · · · · · · · ·
A Markov Model consists of 3 things	· · · · · · · · · · · · · · · · · · ·
(1) A set of states	
(2) Transition probabilities between states	S
(3) Probabilities for the starting states	Prob(start in A) = $1/4$ Prob(start in T) = $1/4$
	Prob(start in C) = 0 Prob(start in G) =
	
$\mathcal{O}_{\mathbf{a}}$	
	~
(A)	T)
$\int \frac{1}{2} $	e
0.2	· · · · · · · · · · · · · · · · · · ·
0.25	
0.25	

· · · · · · · · · · · · · · · · · · ·		
A Markov Model consists of 3 things		
(1) A set of states	A, C, G, I	
(2) Transition probabilities between st	ates	
(3) Probabilities for the starting states	Prob(start in A) = $1/4$	
	Prob(start in C) = 1/4	
	Prob(start in G) =	
0.9		
	0.7	
	, (T)	
	+ (⁹ .) 0. (
0.2		
0.3		
· · · · · · · · · · · (· · ·) · · · · ·		
	0.1	
0. 25		

. Markov Models		• • •	• •			• •	
Ok, so we could keep iterating like this and on chromosome or genome	create a	rando	m ge	ne, c	or	· · ·	•
Here are some challenges to help your underst	tanding o	f Marl	kov n	node	ls -	· ·	•
Challenge 1: What does a random walk look lik	ke in this	Marko	ov mo	odel?	•	• •	
		• • •	• •	· ·	•	• •	
		· · ·	· ·	• •	•	• •	•
	B) Pre		s-fai	- - - - - - - - - - - - - - - - - - -	- - - ∧) _);=
) Pro	b (:	s-fa-	-	· · · ·	,) =
Challenge 2: Create a Markov model that repeating of times (could be 1 or more times	ats ABC as) but the) Pru an arb last o	b(s	s-fa y nun nds ir	ר, nbe א X	~ ~ 不	,) =
Challenge 2: Create a Markov model that repeating of times (could be 1 or more times ABCX	ats ABC as) but the) Pru an arb last o	bitrary ne er	s-fu- y nun nds ir	רי nbe n X	r	,)) =
Challenge 2: Create a Markov model that repeating of times (could be 1 or more times ABCX ABCABCABCX	ats ABC as) but the) Pru an arb last o	bitrary ne er	s-fu / nun nds ir	רי nbe א	r.	,) =
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX	ats ABC as) but the) Pru an arb last o	bitrary ne er	s-fa- / nun nds ir	∙ ト 7 nbe n X	r.) =
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX ABCABCABCX	ats ABC as) but the) Pru an arb Iast o	bitrary ne er	s-fa- y nun nds ir	nbe n X	т.) =
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX ABCABCABCX Only that sequence is allowed!	ats ABC a b) but the) Pru an arb Jast o	bitrary ne er	s-fa- nds ir	hbe n X	г.)) =
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX ABCABCABCX Only that sequence is allowed! All other patterns are disallowed.	ats ABC a b) but the) Pru an arb Iast o	bitrary ne er	s-fa- nds ir	nbe n X	· · · · · · · · · · · · · · · · · · ·))=
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX ABCABCABCX Only that sequence is allowed! All other patterns are disallowed.	ats ABC a b) but the	en arb	vitrary ne er	s fa	nbe n X	τ. 	.) =
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX ABCABCABCX Only that sequence is allowed! All other patterns are disallowed.	ats ABC as) but the	Pru an arb last o	vitrary ne er	s fa nds ir	nbe n X	τ.) =
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX ABCABCABCX Only that sequence is allowed! All other patterns are disallowed.	ats ABC a b) but the) Pru an arb Jast o	bitrary ne er	s-fa- nds ir	nbe n X	г.))=
Challenge 2: Create a Markov model that repeat of times (could be 1 or more times ABCX ABCABCABCX ABCABCABCX Only that sequence is allowed! All other patterns are disallowed.	ats ABC a b) but the	en arb	vitrary ne er	s fa	nbe n X	τ	.) =

1	. -	nv	er	tin	g 1	th	e	Ma	ar	ko	v V V	M	od	el	S	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	· ·
o o o o	•	If	I g	jive ł	yc nov	bu v.d	a N o	Иа yo	rko u 1	ov figi	Mo ure	ode o	el a ut t	is I he	oef p	ore rob	ar ab	nd ility	a (/ 0	ger f.th	ne nat	ge	en	e?	•	•	• •		•	•	•	•	• •
• • • •	•	• •	•		7.	•			•	te	, ,	•		• •	· ·	•	•	•	•		•			S	אי ר ב	ne bef	n 200	1.30 2.4	de		25	•	· ·
	•			.' 6	<u>.</u> 4	•	• C	~)•2		.9 .0	.2		. 0+	2				•			•)	•			•				•	•	•	• •
	•		`			•				•			. 0	<u>م <</u>		•		Â	~	\sim	ſ	2		•	P	rob)(s	tar	t in t in	A) =	.25	5
C		. <i>C</i>		0.	25			.9	5) . L.	•						ノ	E) 17	-1	*			·P	rob)(S	tar	t in	C) =) =	0	,
Tion	٦	G		ð	.3	•	. (9. 3		. 0	۹.۱		. 0	.3			0) (6			•	•	P	rob)(S	tar	t in	G); =	:.5	• •
• •	•	Τ	•	Ø	. l	•	• • č	ا. و		•	0.1	ŀ	. 0	• 7	7	•	l	9		<u>ر</u>		0	F.	•	Ŧ	3:1	- ·	S	Μα	: N	L	u+	
• •					, fir	nto	ro	et.		רירי													-	-		Zu	30		zÿ	0	-jl		
						ite	i Ca	5ι.		JC .	101		н.					-	•	•	•	•	•	•		•			•	•	•	•	
• •													•	• •	• •				0								• •						• •
• •		• •				•	•	•	•					• •			•		•		•	•	•	•	•		• •		•	•	•	•	• •
• •		• •		•		•	•	•	•	•	•					0	•		•	•	•	•	•	•	•					•	•	•	• •
• •																																	
• •		• •																					•									•	• •
		• •																															
	•	• •	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	• •
	•	• •	•	•	•	•	•	•	•	•	•		•			•	•	•	•	•	•	•		•	•	•			•	•	•	•	• •
								0													0												
• •																																	• •
	•	• •	•	•	•		•				•					•	•				•	•		•		•				•	•	•	• •
• •																																	
• •		• •												• •																			• •
	•	• •	•	•	•		•	•		•	•					•	•	•	•	•	•	•	•	•		•			•	•	•	•	• •
• •		• •												• •					0										0				• •

1.	. In	ver	tin	g th	1e	Mai	rkov	v N	lode	els	• •		0 0 0 0	•	0 0 0 0	•		• •	•	• •	0	•	•	0 0 0 0	•
· · ·	• •	lf I g	give h	you ow	i a l do	Mark you	kov N figu	Mod re c	el as out th	be be p	fore rob	ano abil	d a ity c	gen of th	e, at g	en	e?	• •	•	• •	•	•		• •	•
· · ·	• •	• •		· · ·	•	• • •	-to			•	• •	•	• •	•	• •	•	•	· ·	•	• •	•	•	•	· ·	•
• • •	-	A	 0.	<u>.</u>	. (9.2	. 9 . • 0 ,•	ν 2	0.2		• •	(),		•	Ω	•	•	• •		• •		•	•	• •	
• • •		Ċ	Ó.	25	•).25	· 0:	25	0.9	LS		Â		\sim	C)	•	Pr Pr)dc ob(sta sta	rt ir rt ir	n A n T) [;] =) [;] =	.25 .25	
from	• •	G.	Ø.	3	. (93.	. 0	.1	D.	3	• •		× ×	\leq	() (•	Pro Pro	ob(ob(sta sta	rt ir rt ir	i C i G) =) =	0 .5	
• • •		T	0.	t	•	0.	. 6).(0.	7	• •	.0			C	5	•	• •		• •	•	•	•	• •	•
· · · ·		Wha	at is	the	prc	obab	ility o	of st	tartin	ıg w	ith s	state	e/nu	Iclee	otid	e T	?	1/4	•	· · ·	•	•	•	· · ·	•
			•		•					•		•		•		•	•		•		•	•	•		•
				• •			• •				• •				• •	0		• •	٠	• •		0	0		
• • •							0 0			•	o o			0	• •	•		• •		0 0		•		• •	
• • •			•	• •	•	• •	• •		• •	•	• •	•		•	• •	•	•	• •	•	• •				• •	
			•		•	• •	• •	•		•		•		•		•	•		•		•	•	•		•
			•	• •		• •			• •	•		•		•		•	•	• •		• •	•	•	•		
				• •			• •		• •									• •		• •					
			•	• •	•	• •	• •			•	• •	•		•		•	•	• •				•			
• • •				• •	•	•••	• •		• •	•	• •	•		•	• •	0	•	• •	•	• •	•	•	•		•

1	.	nve	ert	in	g t	he	Ň	ar	ko	v N		lel	S	0	0	•	• •	•	•	• •	•	•	• •	•	• •	•	• •	0
· ·	•	lf	l gi	ve h	yoı ow	u a do	Ma yo	arko ou 1	ov N figu	Mod re c	lel a but i	as t the	oefo pr	ore oba	an abil	d a ity	a ge of l	ene tha	, t ge	ene	?	•	· ·	•	· ·	•	• •	•
· ·	•	• •				• •	C.	•	-to G		T	• •		•	•	•	• •	•	•	• •	•	•	• •	•	• • • •	•		•
	•	A		0.	4		0:7	2 '	0,	γ.	0.	.2		•	$\left(\right)$	•		•	0			Dro	 b(o	tort	in A			
	•	С		0.	25	 	0:2	25	0	25). <u>2</u> 5	5 •		A	9	\mathcal{L}) (D			Pro Pro	b(s b(s b(s	tart	in 7 in 1 in C	() = () = () =		5
frov	~ .°	. G.		Ø•	 3 ·	• •	0.1	3.	0	.l	. C).3		•			\times	2	5	•		Pro	b(s	tart	in C		= .5	
• •		T	2	O.	i I	• •	0.	t.	. 6).(. (F	• • •	0	}		2 \	0		•	•	• •	•	• •	•	• •	
· · ·	•		hat e a	is re	the in s	e pr	oba e T	abil : w	lity (hat	of s is t	tart he	ing oro	wi	th s pilit	tate	e/n f tra	iucl	eot	ide a to	T? c G	0	.25	· · ·		· · ·	•	• •	•
		• •			• •	• •			• •					•		•	• •				0	0			• •		• •	
• •	•	• •	•			• •	•		• •		•	• •		•	•	•	• •	•	•		•	•	• •	•	• •	•	• •	
	•	• •		•			•	•	• •		•			•	•			•	•		•	•		•		•	• •	•
• •		• •				• •			• •			• •				•						0			• •		• •	
		• •	•			• •			• •			• •		•		•	• •		•		0	0			• •	•	• •	
• •	•	• •		•	• •	• •	•	•	• •			• •		•		•	• •	•	•	• •	•	•	• •		• •	•	• •	
	•		•	•			•	•			•			•	•	•		•	•		•	•		•		•		•
																											• •	
• •	0	• •	•	•			•	•	• •			• •		•	•	•		•	•		•		0 0		• •		• •	
	•		•	•	• •		•	•			•			•	•	•		•	•		•	•	••••	•		•	• •	
• •		• •				• •								0		•					0		• •		• •			
		• •			•	• •			• •			• •				•	• •			•			• •		• •		• •	

$ \frac{1}{6} $ $ \frac{A}{C} \frac{G}{G} \frac{T}{1} $ $ \frac{A}{C} \frac{G}{G} \frac{G}{G} $ $ \frac{A}{C} \frac{G}{G} $ $ \frac{G}{G} \frac{G}{G} $ $ \frac{G}{G} \frac{G}{G} $ $ \frac{G}{G} \frac{G}{G} $ $ \frac{G}{G} \frac{G}{G} $ $ \frac{G}{$	A C G T 0.4 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.3 0.3 0.1 0.3 0.1 0.1 0.1 0.7 e of interest: TGCTCAAA t is the probability of starting with state/nucleotide T? 0.25 are in state T; what is the probability of transiting to G? 0.1 are in state G; what is the probability of transiting to C? 0.3 (And so on and so forth for the remainder of our baby gene)	f_{o} $A C G T$ $A 0.4 0.2 0.2 0.2 0.2$ $C 0.25 0.25 0.25 0.25$ $A 0.4 0.2 0.2 0.2 0.2$ $A 0.4 0.2 0.2 0.2 0.2 0.2 0.2$ $A 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2$ $A 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2$	in A) in T) in C)
ACGTA 0.4 0.2 0.2 0.2 0.25 0.25 0.25 0.025 0.25 0.25 0.025 0.025 0.3 0.3 0.1 0.3 0.1 0.1 0.7 0.1 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.7 0.1	ACGT 0.4 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.1 0.3 0.3 0.1 0.1 0.7 0.7 0.1 0.1 0.7 0.7 0.1 0.1 0.7 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.1 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.25 0.1 0.7 0.1 0.1 0.7 0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	in A) in T) in C)
A 0.4 0.2 0.2 0.2 0.2 C 0.25 0.25 0.25 0.25 C 0.25 0.25 0.25 C 0.25 0.25 0.25 C 0.25 0.25 C 0.25 C 0.3 C 0.3 0.3 0.1 0.3 C 0.1 0.1 0.7 C 0.1 C 0.1 0.1 0.7 C 0.5 C	6.4 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.1 0.3 0.1 0.1 0.1 0.7 e of interest: $TGCTCAAA$ t is the probability of starting with state/nucleotide T? 0.25 are in state T; what is the probability of transiting to G? 0.1 are in state G; what is the probability of transiting to C? 0.3 (And so on and so forth for the remainder of our baby gene)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in A) in T) in C)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.25 0.25 0.25 0.025 0.025 0.025 Prob(start in T) Prob(start in C) 0.3 0.3 0.1 0.3 0.1 0.7 Prob(start in G) 0.1 0.1 0.1 0.7 0 0 Prob(start in G) e of interest: TGCTCAAA 7 0.25 0 0 0 t is the probability of starting with state/nucleotide T? 0.25 0.1 0.1 0.1 are in state T; what is the probability of transiting to G? 0.1 0.1 0 0 0 (And so on and so forth for the remainder of our baby gene) 0 0 0 0 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in T) in C) in G)
Gene of interest: TGCTCAAA T 0.1 O.1 0.1 O.1 0.1 O.1 0.7 O O O O O O O O O O O T O	0.3 0.3 0.1 0.3 0.1 0.1 0.7 e of interest: TGCTCAAA t is the probability of starting with state/nucleotide T? 0.25 are in state T; what is the probability of transiting to G? 0.1 are in state G; what is the probability of transiting to C? 0.3 (And so on and so forth for the remainder of our baby gene)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	in G)
T 0.1 0.1 0.7 0 0 Gene of interest: TGCTCAAA * * * * What is the probability of starting with state/nucleotide T? 0.25 * * * We are in state T; what is the probability of transiting to G? 0.1 * * * We are in state G; what is the probability of transiting to C? 0.3 * * *	e of interest: TGCTCAAA t is the probability of starting with state/nucleotide T? 0.25 are in state T; what is the probability of transiting to G? 0.1 are in state G; what is the probability of transiting to C? 0.3 (And so on and so forth for the remainder of our baby gene)	$T = 0.1 = 0.1 = 0.7 \qquad 0 = 0.7 \qquad 0$ Gene of interest: TGCTCAAA	· · · ·
Gene of interest: TGCTCAAA What is the probability of starting with state/nucleotide T? 0.25 We are in state T; what is the probability of transiting to G? 0.1 We are in state G; what is the probability of transiting to C? 0.3	e of interest: TGCTCAAA t is the probability of starting with state/nucleotide T? 0.25 are in state T; what is the probability of transiting to G? 0.1 are in state G; what is the probability of transiting to C? 0.3 (And so on and so forth for the remainder of our baby gene)	Gene of interest: TGCTCAAA	· · · ·
We are in state G; what is the probability of transiting to C? 0.3	are in state G; what is the probability of transiting to C? 0.3 (And so on and so forth for the remainder of our baby gene)	We are in state T; what is the probability of transiting to G? 0.1	
We are in state G; what is the probability of transiting to C? 0.3	are in state G; what is the probability of transiting to C? 0.3 (And so on and so forth for the remainder of our baby gene)	We are in state T; what is the probability of transiting to G? 0.1	
	(And so on and so forth for the remainder of our baby gene)	We are in state G; what is the probability of transiting to C? 0.3	
	(And so on and so forth for the remainder of our baby gene)		
· · · · · · · · · · · · · · · · · · ·	(And so on and so forth for the remainder of our baby gene)		
	(And so on and so forth for the remainder of our baby gene)		
(And so on and so forth for the remainder of our baby gene)		(And so on and so forth for the remainder of our baby gene)	

	give you a	a Marko	ov Mod	lel as bef	ore and a g	gene,			
	how do	o you f	figure c	out the p	robability o	f that gene	?		
• •									
	i A	C	G	T					
A	0.4	0.2	· 0,2 ·	0.2					
Ċ	0.25	0.25	0.25	0.25	(A)	$\rightarrow \bigcirc$	Prob(Prob(start in A) start in T)	= .
					(1)	269	Prob(Prob(start in C start in G) = () = .
G.	Ø.3 	· 0.3.	0.1	. 0	<u> </u>	<u>`</u> `©			
τ	O.l	0.	0.(0.7	Ø	J			
We	are in sta are in sta are in sta	te C; w te A; w te A; w	/hat is t /hat is t /hat is t	the proba he proba he proba	bility of tra bility of tra bility of tra	nsiting to A nsiting to A nsiting to A	? 0.25 ? 0.4 ? 0.4	 	• •
We									
We we	want that p	orobabi	ility tha	t all thes	e things ha	ppen. This	is the joi	nt probabi	ity.
We So we v Prob	vant that p (T) * Prob(orobab (T to G	ility tha) * Prot * Pro	t all these o(G to C) b(C to A)	e things ha * Prob(C t * Prob(A to	ppen. This o T) * Prob o A) * Prob	is the joi (T to C) (A to A)	nt probabil	ity.
So we v Prob	vant that p (T) * Prob(5 * 0.1 * 0	orobabi (T to G .3 * 0.2	ility tha) * Prot * Pro 25 * 0,1	t all these o(G to C) b(C to A) * 0.25 *	e things ha * Prob(C t * Prob(A to 0.4 * 0.4 =	ppen. This o T) * Prob o A) * Prob • 0.000(is the joi (T to C) (A to A))075	nt probabil	ity.

	• •	• •	•	•	•		•				č	•	1							•		•	•	•	•	•	•	•	•	• •		
	• •		A.		. (0	-†. -				Γ				0	0		0	0		0	0	0				0			, , , , , , , , , , , , , , , , , , ,	
•	A A	0	5.4	0	C)•2	•	D	.2	0	0	.2		•	•	\bigcirc		•	•		2	•	•							· ·	· ·	
	· ·	0	.25	•). <u>2</u>	5	Ċ).2	5		<u>୨.</u> ୨	5	•		(I	Ì	5	\sim	Ć	Ì)	•	, F	, vio	Þ(șta șta	art art	in / in i	А) Т)	=	.4 .2
																ĺ.	1	X) R	•[. 1			. F	Pro Pro	b(sta	art art	in in	C) G) =.) =	. 0
	G.	Č	0.3		Ċ	9.3		. (9.1			0.	3		•	Č		Ę	6	(Ś		•	•				а с			, .	
•	Τ	C). [•	Ċ	ו. פ		•	0.	Ú		Ο.	7	•	•	Ŀ	9				C	5	•	•	•	•	•		•			
	• •	ļ.	0																										0		, ,	•
	• •		•																													
	• •	• •	•	•	•	•	•	•	•	•	•	•			•	•	•		•	•		•	•	•	•	•						
•	0 0																														, ,	
	• •		•																													
	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					
•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•
			0																													
	• •	• •	•	•	•	•	•	•	•	•	•	•			•	•	•		•	•		•	•	•		•	•					
	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				• •		
	0 0		0																							0			0		, ,	
	• •		•									•																				
	• •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•						
	• •		0																										0			•
	• •		•	•	•			•	•	•		•			•	•	•		•	•			•	•			•		•			
	· ·	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•		•			
•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			
			•																													
	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				,

1. Inverting the Markov Models
If I give you a Markov Model as before and a gene, how do you figure out the probability of that gene?
Prob(Gene of Interest TGCTCAAA) = 0.0000075
Why in the world is this even remotely interesting or important?
Fair question. First, it's true. We typically don't care about the probably of 0.0000075 itself. But. However.
Usually the Markov Model is built in a way that it captures some salient aspect of biology.
For example, we could build a Markov Model to capture the essence of "coding DNA"
Challenge #4: How would you build such a Markov model for coding DNA of Baker's yeast? That is, how would you determine the transition probabilities and the initial probabilities for coding DNA in Baker's Yeast?
So that probability measures to some extent how "realistic" a nucleic acid sequence is and how likely it would actually occur in nature.
This is at the heart of today's example of using Hidden Markov Models to find genes in genomes.
Challenge #4 corresponds to Assignment 3, Question #1 where you are asked to do this in R for Chromosome 1 of Baker's Yeast.

2. The Gene Finding Problem

Candida albicans SC5314 chromosome 1

		· · · · · · · · · · · · ·
We are given an unan	noted genome. Think of it as a	long linear chromosome.
· · · · · · · · · · · ·		· · · · · · · · · · · · ·
Maria a		· · · · · · · · · · · · · · · · · · ·
nucleotide		last nucleotide
he goal is to find those	e regions that code for genes.	· · · · · · · · · · · · ·
· · · · · · · · · · · ·	Non con my	
	Ϋ́	
	ene a la segene a la la	gene a sa s
	1 2	3
For simplicity of exposit	tion, let's assume that genes a	re really simple (eg no
For simplicity of expositing the second seco	tion, let's assume that genes a	re really simple (eg no
For simplicity of exposit ntrons) We can think of walkin	tion, let's assume that genes a g along the chromosome, anno	re really simple (eg no otating each position
For simplicity of exposit ntrons) We can think of walkin as coding (E) or not	tion, let's assume that genes a g along the chromosome, anno n-coding (N)	re really simple (eg no otating each position
For simplicity of exposit ntrons) We can think of walkin as coding (E) or not	tion, let's assume that genes a g along the chromosome, anno n-coding (N)	re really simple (eg no otating each position I use E G(gene) & C (paflict with
For simplicity of exposit ntrons) We can think of walkin as coding (E) or not	tion, let's assume that genes a g along the chromosome, anno n-coding (N)	re really simple (eg no otating each position I use E G(genc) & C (ouflict with acid (etter
For simplicity of exposit ntrons) We can think of walkin as coding (E) or not NNNNN EEEEE	tion, let's assume that genes a g along the chromosome, anno n-coding (N)	re really simple (eg no otating each position T use E G(genc) & C (outling with acid letter
For simplicity of exposit ntrons) We can think of walkin as coding (E) or not NNNNN EEEEEE	tion, let's assume that genes a g along the chromosome, anno n-coding (N)	re really simple (eg no otating each position I use E G(gene) & C (outflict with acid (etter
For simplicity of exposit ntrons) We can think of walkin as coding (E) or not NNNNN EEEEEE Gene	tion, let's assume that genes a g along the chromosome, anno n-coding (N) ເມນູດ ເບັດ ເບັດ ເບັດ ເບັດ ເບັດ ເບັດ ເບັດ ເບັ	re really simple (eg no ptating each position I use E G(gene) & C (onflict with acid letter GORE

3. Hidden Markov Models (HMMs)	Before gene tinding let's start with a simple example.
An HMM is a Markov Model that emits symbols at eac probabilities.	h state with different
Let's build one for this example:	They look
st You are at a casino and the dealer has two coins.	identical
\bigstar One coin is fair: 50% Heads and 50% Tails.	
X One coin is biased: 90% Heads and 10% Tails.	Markov
The dealer uses the following algorithm:	MADNESS
$\cancel{1}$ 0. Pick the fair coin with 50% probability in secret.	
Now repeat the following 10 times	
1. Flip the coin in public and make the result visible	e
2. In secret, keep the same coin with probability 80	0%; otherwise swap.
3. Go to Step 1.	
GOAL: For each of the 10 coin tosses, guess which co foir 0.2 F $0.2B0.2B0.20.8$	bin she used. coin # Two states F ? = two coins.

3.	Hidden	Markov	v Models	(HMMs)	· · · · · · · · · ·	· · · · · · · · ·
***	Emit	(H : (T: C	0.5 F J O.8	0.2	Emit H: 0, T: 0 B O.8	9. ₩
· · · · · · · · · · · · · · · · · · ·	Challenge	e #5:				· ·
	t would l		dudes for	etatos from	the following o	miccione?
Wha						
vvna Enissii s fat	ons : -cs		H H'T	HHHH	UT てんA	H H ?
wha وسنssii ح حمط Wha you	at would i 	vorst gu	H H'T	H H H F F	IT てんみ	H H ? e? Why did
wha وسنجينا ح حصا Wha you	at is the v chose it	vorst gu	H H'T	H H H F	IT て H A same sequenc	H H ? e? Why did
vvna enissii s -{~t Wha you	at is the v chose it	vorst gu	H H'T	H H H F	IT て H A same sequenc	H H ? e? Why did
wha وسنجينا الا Wha you	at is the v chose it	vorst gu	H H'T	HHHH ates for the	IT て H A same sequenc	e? Why did

3. Hidden Markov Models (HMMs)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
It's easy for the dealer to compute the probability because they know both the states and the omissions
Prob (state: F F B B B) emissions: T H H H H) = Prob (start in F) - Prob (emit Tin F) - Prob (stay state F) - Prob (emit H in F) - Prob (F to B) e Prob (emit H in B) - Prob (stay in B) e Prob (emit H in B) - Prob (stay in B) . Prob (emit H in B) . Prob (stay in B)
• $Pro5$ (emit $4 = 5$) = $\frac{1}{2}$ • 0.8 • $\frac{1}{2}$ • 0.2 • 0.9 • 0.8 • 0.9 • 0.8 • 0.9 = 0.00933

3. Hidden M	/arkov Models (I	HMMs)		· · · · · · · · · ·
X Emit	H: 0.5 T: 0.5 F F F F F	0.2 0.2	Mit H: 0.9 T: 0. B) O.8	· ₩
But not easy fo	r the player witho	out knowing t	ne states	· · · · · · · · ·
Pros Already for a	(state: emissions:.	THHH eotides, there	HH HH	rent state
<u>Casel</u> Prob (emi	state: F F ssions:. て み	F F F H H A	One of 3 is that the always u fair co	2 possibilities he dealer sed the
$\frac{1}{2}, \frac{1}{2}, \frac{4}{5}$		12.4. <u>1</u> =	$\frac{1}{2} 6 \cdot \left(\frac{4}{5}\right)^{4}$	= 0.0064
· · · · · · · · · · ·		· · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·

3.1	Hidden Markov Models (HMMs)
*	Emit $H: 0.5$ T: 0.5 D:2 T: 0.1 F = B O:2 S O:2 T: 0.1
There	32 0.8 are 2^5 different possibilities (just for 5 midestides ()
Case 1 Pros	$ \begin{cases} state: FFFFFF \\ emissions: THHHH \end{cases} = 0.0064 \end{cases} $
Case 2 Prod (state: $F F F F B$ emissions:. $T H H H H$ = 0.0029
Case 2 Pro5 (state: $F F F B F$ emissions:: $T H H H H$ = 0.0007
Case 2 Pro5 (state: $\begin{bmatrix} B & B & B & B & B \\ emissions: & T & H & H & H \\ \end{bmatrix} = 0.0(3)$

3. Hidden Markov Models (HN	IMs <u>)</u>
Because the states are hidden for consider all possibilities and cho highest probability	om the player, the player has to ose the state sequence with the
This answer has the maximum line $5 \approx 10^{-10}$	kelihood of being correct
F F	\mathbf{B}
F B F $B/1 /1 /1$	FBFB
F B F B F B F B F B $/ \land \land$	F B F B F B F B F B $A A A A A A A A$ $F B F B F B F B F B F B F B F B F B F B$
	Dasshilities
Λ=5, 32	We want the
· · · · · · · · · · · · · · · · · · ·	ishest probability.
Which one has max p	0 hly 2 ²⁵⁰ molecules in the universe

	· · · · · · · · · ·		
The Viterbi algorithm			
Beyond the scope of th	nis course		
Beautiful, elegant algo	rithm that finds the i	most likely state	sequend
I <u>nput</u> : a HMM and a er	mission sequence	· · · · · · · · ·	• • • •
Output: a state sequer	nce with max probab	oility	
Really fast!! One of the	e important algorithn	ns known	
Really fast!! One of the	e important algorithn	ns known	· · · · ·
Really fast!! One of the	e important algorithn	ns known	
Really fast!! One of the	e important algorithm	ns.known	
Really fast!! One of the $\underline{I_{non}}$ + ;	e important algorithm	ns known ННТН	HT1
Really fast!! One of the $\underline{I_{non}}$	e important algorithm	ns known ӉӉҬӉ҄	- H T 1
Really fast!! One of the	e important algorithm	ns known , ДДТД	- H T 1
Really fast!! One of the Inort:	e important algorithm	FFFB.	- HT 1 - FB
Really fast!! One of the Input : Output :	e important algorithm	nsknown , HATH FFFB.	- H T 1 - F B
Really fast!! One of the Input : Output :	e important algorithm	nsknown , HATH , FFFB.	- F B
Really fast!! One of the Ingent :	e important algorithm	ns known , ннтн FFFB.	- FB

How might we set	t up an HMI	M for gene find	ing?	· · · · · · ·
NNNNNEEEEE	ENNNNNK	UN EEEE NNN	NNNEEEE	NANA A4
gene 1		gene 2	gen 3	
· · · · · · · · · · · ·	probability of	stating a gen	• •• • • • • • • • • • • • • • • • • •	· · · · · · ·
V = non-codiny emissions	$\left(N \right) = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$		E= coding	lexon emissions
A ? C ?	<u>(</u>) ?	?	5	A ? C ?
G ? T 2	Prob(sta	art in coding E)=0	G ? T 2
For the remaining	g transition	probabilities w	e need trair	ing data.
For example, if w we might use to estimate t	ve are worki e a well anr hese paran	ing with an obs notated genom neters.	cure fungus e like Baker	s, 's yeast
This is called a "I	oarning sot	" a concept ce	ontral in mar	hine learnin

3. Hidden Markov Models (HMMs) and Gene Finding So well studied ve know NNNNNEEEEENNNNNNEEEEEENNNEENN ACGTATCGAA CGTACTCGAAA GGG GGTT where genes BAKERS YEAST & TRAINING SET & How do we estimate the non-coding emissions? N = non-codiny emissions $A = \frac{N_{A}}{4\pi N} = \frac{3}{15}$ $C = \frac{N_{C}}{4\pi N} = \frac{3}{15}$ $\left[\left(\frac{1}{2} \right) \right]$ G NG/#N = 5/15 T NT/#N = 4/15 (=15) #N = total number of non-coding nucleotides. NA = total number of non-coding A's (=3) Same for NT, NC, NG.

3. Hid Baker's Yeast	NNNNN EEE ACGTA TC GA	odels (HMMs) an F EC N N N N V E E E A C G T A C T C G	d Gene F	NECWN GGTT	So well studied we know where genes arc
Do the a	nalogous for co	ding emissions,	 	· · · · · · ·	
· · · · · · · · ·	 	· · · · · · · · · · · ·	· · · · · ·	· · · · · ·	
· · · · · · · · · · · · · · · · · · ·	N)F				
· · · · · · · ·	Ŭ	\mathcal{C}		2/13	· · · · · · · ·
· · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·		4/13	· · · · · · · ·
	· · · · · · · ·	· · · · · · · · · · · ·	.	2/13	· · · · · · ·
ŧΈ	= total n	under of	codina	nuclest	des (= 13)
EA	= total	rumbe-st	codin	Э A`s	$\left(\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
E	c, E_{G}, E_{T}	enclosous			

3. Hidden Markov Models (HMMs) and Gene Finding

Note how there are more Es in the gene region than outside. Noisy but ...

Re	gior	~		СТ	G A2	iene	•			XM_	Transc 71397	ript 8.2	•		Exons: (click a	n exon	to zoo	m in, r	nouse	over t	o see	details										
5	5	3 NC	032	089.1		0	> @	a =			-1	€.	AT6 1	1 3	r X																		Ē.
	-	10,70	0							1	0,710								10,72	а .							10	730					
Ð _A	Ċ	. (: T	T	Т	A	Т	т	т	c c	с	С	C (C A	L C	С	A	Т	G C	С	A	G	A	A /	A A	С	Ċ	т	C (C A	A	A	¢
Ν		1 1	I N	N	N	E	Е	Ν	Ν	NN	N	Ν	ΕE	E	E	Е	E	5	Εd	ΕE	Ν	Ν	Ν	NN	N N	E	Е	E	ΕI	E_E	. E	Ν	
Ger	nes	Re	efSe	q pr	opag	gatio	on f:	rom (CGD,	ann	otat	ion	versi	on i	A22-s	07 - 1	n01-	r01							14								
															M 7100	70.0		_		_		_			_	_				_		_	-
														x	M_7139	78.2	«)		-		÷			÷			-	<u> </u>	XM_710	3978.2			
														>	(P_7190	971.2)	өтө	-	CCE	>		688	\rightarrow	880		-	стс	XP_71	9071.2 CBI		-	ec.
														L		_	_	M		P			E		N			Ľ.	_	- Q			T
	-	10,70	10							1	0,710								10,72	a .							10	,730		··			-
N	VC_0	3208	39.1:	11K1	.1K (6	50 nt)																											
		-																															
					0									0													0						0
		-																															

Toolkit for bio-sequence analysis using HMMs: hmmer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: More math-ee but still accessible: https://dowardsdatascience.com/mat/ov.chains.and-hmms.ceat2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
Toolkit for bio-sequence analysis using HMMs: hmmer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: More math-ee but still accessible: https://towardsdatascience.com/mat/sor-chains-and-hmms-ceat2c854783 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
Toolkit for bio-sequence analysis using HMMs: hmmer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: More math-ee but still accessible: https://owardsdatascience.com/mattor.chains.and-hmms.ceat2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
Toolkit for bio-sequence analysis using HMMs: hmmer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: More math-ee but still accessible: https://towardsdatascience.com/mat/ov-chains-and-hmms.ceal/20854788 Image: There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
Toolkit for bio-sequence analysis using HMMs: hmmer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: Louis Serrano Image: More math-ee but still accessible: https://owardsdatascience.com/markov-chains-and-hmms.ceal2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
Toolkit for bio-sequence analysis using HMMs: hmmer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: More math-ee but still accessible: https://towardsdatascience.com/markov-chains.and-hmms-ceat2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
Toolkit for bio-sequence analysis using HMMs: Immer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: Louis Serrano <td< td=""><td></td><td></td></td<>		
Toolkit for bio-sequence analysis using HMMs: Immer.org The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) Image: An alternative non-math and non-bio presentation for HMMs: Louis Serrano Image: Louis Serrano <td< td=""><td></td><td></td></td<>		
The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.) An alternative non-math and non-bio presentation for HMMs: Louis Serrano tds More math-ee but still accessible: https://owardsdatascience.com/matkov-chains-and-hmms-ceaf2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		Toolkit for bio-sequence analysis using HMMs: hmmer.org
(My course uses the HMM package in R though.) An alternative non-math and non-bio presentation for HMMs: Louis Serrano tds More math-ee but still accessible: https://towardsdatascience.com/markov_chains-and-hmms-ceat2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase	· <mark>· .</mark>	The package rhmmer gives you access to it in R.
An alternative non-math and non-bio presentation for HMMs: Louis Serrano tds More math-ee but still accessible: https://towardsdatascience.com/markov-chains-and-hmms-ceal2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		(My course uses the HMM package in R though.)
Image: tds More math-ee but still accessible: https://towardsdatascience.com/markov-chains-and-hmms-ceaf2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		An alternative non-math and non-bio presentation
More math-ee but still accessible: https://towardsdatascience.com/markov-chains-and-hmms-ceat2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		for HMMs: Louis Serrano
tds More math-ee but still accessible: https://towardsdatascience.com/markov.chains-and-hmms-ceat2c854788 There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
tds More math-ee but still accessible: https://towardsdatascience.com/markov-chains-and-hmms-ceaf2c854788 .There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase	<mark></mark>	
There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase	tds • • •	More math-ee but still accessible: https://towardsdatascience.com/markov-chains-and-hmms-ceaf2c854788
There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
There are more mathematically rich HMM tools (not necessarily specific to bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase		
R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase	There are more	mathematically rich HMM tools (not necessarily
Python: scikit-learn, HMMLearn Julia: HMMBase	There are more specific to	mathematically rich HMM tools (not necessarily bio):
Julia. Himimibase	There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM
	There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn
	There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase
	There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase
	There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase
	There are more specific to	mathematically rich HMM tools (not necessarily b bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase
· · · · · · · · · · · · · · · · · · ·	There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase
	There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase
	. There are more specific to	mathematically rich HMM tools (not necessarily bio): R packages: msm, depmixS4, momentuHMM Python: scikit-learn, HMMLearn Julia: HMMBase

RStudio learn Quiz (R, Python or Julia)

Hidden Markov Models

The following questions should help you understand if you understood the lecture material:

Quiz

Start Over

Which of the following statements are correct (Markov Models):

- The sum of the probabilities of all transitions to a node X must sum to one.
- □ The starting state probablities must be equal.
- □ Transition probabailities may be 0.
- □ The probability of any walk is greater than or equal to 0.

Submit Answer

Which of the following are correct (Hidden Markov Models):

- The emission probabilities are not necessarily equal.
- \bigcirc The same symbols must be emitted at each state
- The sum of emission probabilities at each node must sum to 1.
- The most likely walk found by Viterbi is always the correct true walk.

Submit Answer

Create a random walk with the following two-state HMM (use the runif function):

[1] "Transition probs: "

X Y ## X 0.3 0.2 ## Y 0.7 0.8

[1] "Emissions:"

##		Х	Y
##	A	0.1	0.25

Assignment #4

You might consider (but it is not mandatory) using R Markdown to write your answers.

50 total marks.

Question 1 [points 10] Using the S. cerevisiae (Baker's yeast) data that we imported into R in Lectures 13 and 14, show R code of how you would estimate the frequency of A, C, G, T nucleotides in *coding* regions only. Use only chromosome 1.

Question 2 [points 10] Using the S. cerevisiae (Baker's yeast) data that we imported into R in Lectures 13 and 14, show R code of how you would estimate the frequency of A, C, G, T nucleotides in *non-coding* regions only. Use only chromosome 1. Comment on the differences between the two matrices? Do you believe any observed differences are significant? Comment on how you might test significance.

Question 3 [points 20] Using the HMM package in R, implement your model. The documentation for this package is <u>here</u>. Note that you might want to look at the dishonestCasino() function that I wrote to help you with the concepts here. Perhaps follow the viterbi function and the example there. Show your code. Apply it back to chromosome 1. Apply it chromosome 2 too.

Question 4 [points 10] Compute the specificity, sensitivity and accuracy on both chromosomes individually. Comment on your findings.

Good luck!

																		•	

	Poi	nts of	Reflect	tion					
• •									
• •		• • •							
	Make su	re that	t you ur	ndersta	and the d	concept of	of search	ing for the	
• •	most pro reasonal	bable ble wa	walk in v to "qu	the H uess" tl	MM and he corre	why usi ct answe	ng that w r. This is	alk is a a good	
• •	example	of ma	themat	ical op	timizatio	on.			• • • •
• •				· · · · ·					· · · · ·
• •	Suppose lives on l	l was the bo	ttom of	the oc	ted in so ean on t	the side	of strang	ge Archaea ano. In fac	a that t let's
• •	suppose	that it	's a coi oblèms	mplete	ly newly	discover se using	ed speci a gene fi	es. Explaii nding HMN	n Vi for
• •	a specie	s that's	s very o	differer	nt from a	nything	ve've see	en before.	
				· · · ·					· · · · ·
· ·	Instead of seconda	of gene ry stru	e findin ctural e	g, supj elemen	oose you Its of a r	u wanted lascent a	to predio mino aci	ct the d chain. Tl	hat
· · · · · · · · · · · · · · · · · · ·	Instead of seconda is, do yo correspo	of gen ry stru u wan	e findin ctural e t to be turns, h	g, supp element able to nelixes	oose you its of a r sub stra and be	u wanted ascent a ains of th ta sheets	to predio mino aci e sequer Descrit	ct the d chain. Th nce the be how you	hat
· · · · · · · · · · · · · · · · · · ·	Instead of seconda is, do yo correspo would do	of gene ry stru u wan nd to that v	e findin ctural e t to be turns, h with an	g, supp element able to nelixes, HMM.	oose you ts of a r sub stra and be Specific	u wanted ascent a ains of th ta sheets ally desc	to predic mino aci e sequer . Describ cribe the	ct the d chain. Th nce the be how you structure co	hat of the
 . .<	Instead of seconda is, do yo correspo would do HMM bu the HMM	of geno ry stru u wan ond to that v t also 1.	e findin ctural e t to be turns, h vith an how yo	g, supp element able to nelixes, HMM. u woul	oose you ts of a r sub stra and be Specific d learn	u wanted ascent a ains of th ta sheets ally deso the proba	to predic mino aci e sequer . Describ cribe the abilities to	ct the d chain. Th nce the be how you structure o p paramete	hat of the erize
 . .<	Instead of seconda is, do yo correspo would do HMM bu the HMM	of geno ry stru u wan ond to that w t also 1.	e findin ctural e t to be turns, h with an how yo	g, sup elemen able to nelixes, HMM. u woul	oose you ts of a r sub stra and be Specific d learn	u wanted ascent a ains of th ta sheets ally deso the proba	to predic mino aci e sequer c. Describ cribe the abilities to	ct the d chain. Th nce the be how you structure o paramete	hat of the erize
 . .<	Instead of seconda is, do yo correspo would do HMM bu the HMM	of gen ry stru u wan ond to that v t also 1.	e findin ctural e t to be turns, h vith an how yo	g, sup elemen able to nelixes, HMM. u woul	oose you ts of a n sub stra and be Specific d learn	u wanted ascent a ains of th ta sheets ally desc the proba	to predio mino aci e sequer . Descrit cribe the abilities to	ct the d chain. Th nce the be how you structure o paramete	hat J of the erize
 . .<	Instead of seconda is, do yo correspo would do HMM bu the HMM	of gen ry stru u wan ond to o that w t also 1.	e findin ctural e t to be turns, h vith an how yo	g, sup elemen able to nelixes, HMM. u woul	oose you ts of a r sub stra and be Specific d learn	u wanted ascent a ains of th ta sheets ally desc the proba	to predic mino aci e sequer . Describ cribe the abilities to	ct the d chain. The nce the be how you structure co paramete	hat of the erize
 . .<	Instead of seconda is, do yo correspo would do HMM bu the HMM	of gen ry stru u wan ond to that w t also 1.	e findin ctural e t to be turns, h with an how yo	g, sup elemen able to relixes, HMM. u woul	oose you its of a r sub stra and be Specific d learn	u wanted ascent a ains of th ta sheets ally deso the proba	to predic mino aci e sequer . Descrit cribe the abilities to	ct the d chain. The nee the be how you structure of paramete	hat of the erize
	Instead of seconda is, do yo correspo would do HMM bu the HMM	of gen ry stru u wan nd to o that w t also 1.	e findin ctural e t to be turns, h vith an how yo	g, sup elemen able to nelixes HMM. u woul	oose you ts of a n sub stra and be Specific d learn	u wanted ascent a ains of th ta sheets ally deso the proba	to predio mino aci e sequer 5. Describ cribe the abilities to	ct the d chain. The nee the be how you structure of paramete	hat of the erize