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Plan for the day

1. Markov Models (15 mins)

2. Prokaryotic gene finding (10 mins)

3. Hidden Markov Models (15 mins)

4. Puzzles, exercises, and points of reflection (5 mins)

Andrei Andreyevich Markov
1856-1922

Mathematician
Models of stochastic processes

Hidden Andrei Andreyevich Markov

→
-

IMHO one of the top 3 Concepts /tools

for all life scientists
.

T
It would be more appropriate to call

them
"

partially hidden
"

or

"

noise /
y

observable
"

,
but that 's awkward .



1. Markov Models 

A Markov Model consists of 3 things

(1) A set of states

(2) Transition probabilities between states

(3) Probabilities for the starting states

Boring Example

Prob( starting in X )=4/5          Prob( starting in Y )=1/5
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1. Markov Models 

A Markov Model consists of 3 things

(1) A set of states

(2) Transition probabilities between states

(3) Probabilities for the starting states

Boring Example

Prob( starting in X )=4/5          Prob( starting in Y )=1/5

We can generate “walks” through the Markov model by choosing random
   numbers between 0 and 1.
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suppose the random number is 0.1 .

walk

state:X



1. Markov Models 

A Markov Model consists of 3 things

(1) A set of states

(2) Transition probabilities between states

(3) Probabilities for the starting states

Boring Example

Prob( starting in X )=4/5          Prob( starting in Y )=1/5

We are in state X. We pick a random number to determine where next. ,'

7/8
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1. Markov Models 

A Markov Model consists of 3 things

(1) A set of states

(2) Transition probabilities between states

(3) Probabilities for the starting states

Boring Example

Prob( starting in X )=4/5          Prob( starting in Y )=1/5

We repeat for as long as we want, each time picking a random number 
and using the transition probabilities to dictate the next step in our walk,

A nice set of animations 

7/8
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1. Markov Models 

A Markov Model consists of 3 things

(1) A set of states

(2) Transition probabilities between states

(3) Probabilities for the starting states Prob( start in A ) = 1/4
     Prob( start in T ) = 1/4
     Prob( start in C ) = 0
     Prob( start in G ) = 

A, C, G, T

A

C G

T

The transition probabilities must sum to 1 for each node.
  (otherwise they wouldn’t be probabilities.) 

Prob( Heads )       +      Prob( Tails ) = 1
Prob( win lottery ) +      Prob( don’t win lottery ) = 1
Prob( dice is 1 )    +      Prob( dice is 2 ) +     …      +      Prob( dice is 6 ) = 1

¥0
•¥



1. Markov Models 

A Markov Model consists of 3 things

(1) A set of states

(2) Transition probabilities between states

(3) Probabilities for the starting states Prob( start in A ) = 1/4
     Prob( start in T ) = 1/4
     Prob( start in C ) = 0
     Prob( start in G ) = 

A, C, G, T

A

C G

T
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1. Markov Models 

A Markov Model consists of 3 things

(1) A set of states

(2) Transition probabilities between states

(3) Probabilities for the starting states Prob( start in A ) = 1/4
     Prob( start in T ) = 1/4
     Prob( start in C ) = 0
     Prob( start in G ) = 

A, C, G, T

A

C G

T

0.4
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1. Markov Models 

A

C G

T

A network can be a bit messy so sometimes we use a transition matrix
  (and this gets us ready to dig out all that old linear algebra).

"8.÷¥f
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0.25
=

to
.

A. C G T

A 0.4 0.2 0.2 0.2

C 0.25 0.25 0.25 0.25

from
G. 0.3 0.3 0.1 0.3

T 0.1 0.1 0.1 0.7



1. Markov Models 

Prob( start in A ) = 1/4
     Prob( start in T ) = 1/4
     Prob( start in C ) = 0
     Prob( start in G ) =1/2

Let’s create a random chromosome by walking through the Markov model.

0    .1    .2    .3    .4    .5    .6    .7    .8    .9    1

Step 0:   Pick a number at random to determine where to start

GA

0    .1    .2    .3    .4    .5    .6    .7    .8    .9    1

Step 1:    Pick a random number to determine where to go from G

Step 2:   Transit to A; Goto to Step 1.

Step 1:    Pick a random number to determine where to go from A

0    .1    .2    .3    .4    .5    .6    .7    .8    .9    1

to

A. C G
'

T

A 0.4 0.2 0.2 0.2

C 0.25 0.25 0^25 0.25

from
G. 0.3 0.3 0.1 0.3

T 0.1 0.1 0.1 0.7

→• ¥0
t.tk#t

A T G 0.83

§←→④g*
A A

←T!1
*
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§←→④o



1. Markov Models 

Ok, so we could keep iterating like this and create a random gene, or 
chromosome or genome …

Here are some challenges to help your understanding of Markov models

Challenge 1: What does a random walk look like in this Markov model?

Challenge 2: Create a Markov model that repeats ABC an arbitrary number 
of times (could be 1 or more times) but the last one ends in X

ABCX

ABCABCABCX

ABCABCABCABCX

                     Only that sequence is allowed! 
                     All other patterns are disallowed.

¥
①
& Prob(Sta- ti -A) =L

=



Gene of interest: TGCTCAAA

If I give you a Markov Model as before and a gene, 
how do  you figure out the  probability of that gene?

1. Inverting the Markov Models

Prob( start in A ) = .25
     Prob( start in T ) = .25
     Prob( start in C ) = 0
     Prob( start in G ) = .5

to Same model as

A C G
.

T ✓ before .

A 0.4 0.2 0.2 0.2

⇒C 0.25 0.25 0.25 0.25

from 14*419
G. 0.3 0.3 0.1 0.3

T 0.1 0.1 0.1 0.7 % %
.

Bit small but

good enough .



Gene of interest: TGCTCAAA

If I give you a Markov Model as before and a gene, 
how do  you figure out the  probability of that gene?

1. Inverting the Markov Models

What is the probability of starting with state/nucleotide T?   1/4

Prob( start in A ) = .25
     Prob( start in T ) = .25
     Prob( start in C ) = 0
     Prob( start in G ) = .5

to

A. C G
'

T

A 0.4 0.2 0.2 0.2 R R

C 0.25 0.25 0.25 0.25 ④ ⑦
"

from
G. 0.3 0.3 0.1 0.3 ④t%
T 0.1 0.1 0.1 0.7 0 0

•

I



Gene of interest: TGCTCAAA

If I give you a Markov Model as before and a gene, 
how do  you figure out the  probability of that gene?

1. Inverting the Markov Models

Prob( start in A ) = .25
     Prob( start in T ) = .25
     Prob( start in C ) = 0
     Prob( start in G ) = .5

What is the probability of starting with state/nucleotide T?   0.25

We are in state T; what is the probability of transiting to G?  0.1

to

A. C G
'

T

A 0.4 0.2 0.2 0.2

C 0.25 0.25 0.25 0.25

from 14<1*19 .
G. 0.3 0.3 0.1 0.3

T 0.1 0.1 0.1 0.7
• §←→④g

•

t



Gene of interest: TGCTCAAA

If I give you a Markov Model as before and a gene, 
how do  you figure out the  probability of that gene?

1. Inverting the Markov Models

What is the probability of starting with state/nucleotide T?   0.25

We are in state T; what is the probability of transiting to G?  0.1

We are in state G; what is the probability of transiting to C? 0.3

Prob( start in A ) = .25
     Prob( start in T ) = .25
     Prob( start in C ) = 0
     Prob( start in G ) = .5

(And so on and so forth for the remainder of our baby gene)

to

A. C G
'

T

A 0.4 0.2 0.2 0.2

C 0.25 0.25 0.25 0.25

from ft☒t9
G. 0.3 0.3 0.1 0.3

%←→④oT 0.1 0.1 0.1 0.7

•

t



Gene of interest: TGCTCAAA

If I give you a Markov Model as before and a gene, 
how do  you figure out the  probability of that gene?

1. Inverting the Markov Models

What is the probability of starting with state/nucleotide T?   0.25
We are in state T; what is the probability of transiting to G?  0.1
We are in state G; what is the probability of transiting to C? 0.3
We are in state C; what is the probability of transiting to T? 0.25
We are in state T; what is the probability of transiting to C? 0.1
We are in state C; what is the probability of transiting to A? 0.25
We are in state A; what is the probability of transiting to A? 0.4
We are in state A; what is the probability of transiting to A? 0.4

Prob( start in A ) = .25
     Prob( start in T ) = .25
     Prob( start in C ) = 0
     Prob( start in G ) = .5

So we want that probability that all these things happen. This is the joint probability.

Prob(T) * Prob(T to G) * Prob(G to C) * Prob(C to T) * Prob(T to C) 
                * Prob(C to A) * Prob(A to A) * Prob(A to A)

= 0.25 * 0.1 * 0.3 * 0.25 * 0.1 * 0.25 * 0.4 * 0.4  =   0.0000075

to

A. C G
'

T

A 0.4 0.2 0.2 0.2

C 0.25 0.25 0.25 0.25

from
G. 0.3 0.3 0.1 0.3 §?s#g
T 0.1 0.1 0.1 0.7



Challenge #3: Using the same Markov Model, calculate the probability of 
          the following sequence:  GCAACTAG

Prob( start in A ) = .25
     Prob( start in T ) = .25
     Prob( start in C ) = 0
     Prob( start in G ) = .5

to

A. C G
'

T

A 0.4 0.2 0.2 0.2

C 0.25 0.25 0.25 0.25

from
G. 0.3 0.3 0.1 0.3 §?s#g
T 0.1 0.1 0.1 0.7



If I give you a Markov Model as before and a gene, 
how do  you figure out the  probability of that gene?

1. Inverting the Markov Models

Prob( Gene of Interest TGCTCAAA ) =   0.0000075

Why in the world is this even remotely interesting or important?

Fair question. First, it's true. We typically don’t care about the probably  of 0.0000075
itself. But. However.

Usually the Markov Model is built in a way that it captures some salient aspect of 
biology.

For example, we could build a Markov Model to capture the essence of “coding DNA"

Challenge #4: How would you build such a Markov model for coding DNA of 
Baker’s yeast? That is, how would you determine the transition probabilities 
and the initial probabilities for coding DNA in Baker’s Yeast?

So that probability measures to some extent how “realistic” a nucleic acid sequence
     is and how likely it would actually occur in nature.

This is at the heart of today’s example of using Hidden Markov Models to find
genes in genomes.

Challenge #4 corresponds to Assignment 3, Question #1 where you are asked to do
   this in R for Chromosome 1 of Baker’s Yeast.
,

• v

{ I

1 )



2. The Gene Finding Problem

Candida albicans SC5314 chromosome 1

GAGTCACGCCAATCACAAATTCCTTTGAAAAACTTGATTCGACCACATTCACAAGTTTGATTGATTTGAA
AAACTTGATTCGACACCATCCTGCTGTCCATCCGTGAGCCACACAGATTCAGAATTGAGTCGCTGACTAA
GCGGTTAGACATACGTGATATTCACCGACTTTGAGAGTCCCACTAATCGGCTAGACATACGTAAATTACA
TAGCTCCCTCCAATACACACCCTACTTACTATTGTCTTTTTTTAACTTTTTCGTAATCTCTACCCATAAA
AATACACTTTCCCTCCAAATCTCTAATTTACAACTCAACTGAACTTTAATTAACCTCTACTGCCTTAATT
TAAGCTTATTTCTTGTCTATCAGCTGTTTCTGTTTCACCATTTTCACAACTTCTCCCCTAGGTGACATTT
TTTTCTGCTGATTTTTTCTCAAATTCAGCCCAAAAAACTTAAACCAAAACTCAAAATTACAACGCAAACT
CTATTTAGAGTGCCCCTACTACCCCTACTGAGTCTTATTTTGAGTTTACCACCGATTTCTGTGCTCCTCC
TGTCTCCAGATTTCCGGTCTTCGTTCTTTTTTCGATCGAAAACTTTGTAAAACTAAACTAAAAAATTCAC
TCCATTTGACCAACAAASTGCTCAAAATCAGACCAGGCTCACTGCTTCTGCTTTGTCCCTAAAGATTACA
AAAGCTACGCTGCAAAAGAACTTAAAATTGCGTTCCATTATAATCTATACACACCCATCTCCTGCTATCA
CTTCACCTCACGTCCTCCCTGCGCTTGTCCATCCGTGAGTTCAACTACCGCCTCCCTCTTCCCTTGTCCA
CCCGTGATTCGCCAGTCCCTGGCTCTCCATCTTCCACAGATCCTTCACTTGCTTTCCATTGACTATCTTC
TTCTCTTGCCCTAGCTTTTGATTTCCATATTCCTTCAACCATTGTACTAACTCTCTCTTTACTCTGTGCT
TAACTACTATCTCTCTGATCACCTGGCCTGGCGTTATTCTATTTCCAGTTTTTTTTTTTTTCATTGATCC
AACACAACTTCAACTCCCATTCGCTCGGCTCTTGACCCCCTTATCCATTCTCTCAGTACTTCCCGATCCC
TTTTGTTCTTCATTACCCTTTTCTCTGTCTTGCCCTGCTACCCATCCGTGATTYTCCAGCRCTGTTCACT
CCCACGTCCCCGCTGTTGATTGACATTTCCAATTTCACTGACTTTGTTCCCCTACTTTTGCTCACATTTT
TCTGTTCTCAAACTCCTCTCTTGAATTCTCAGCTTGCTGTGTCTCCTTCTTGCCATTACAACTGCTTTTC
TTCACTTGCTTCCTTCTGCTTTGACAACACTGATCATTGACTTGATTTCATTACTTTTCACAAACCCAGT
TTCTAGCTCTATTGACTTCCTCTGCTATCCAGATTTCAAACTTCTTATTGTAACAGTTATAACTGCGTTC
TTCATCTCATCTAATTGATTGATTTGTTGTCGTTGAAGAAAAGTGATATTTTTTGACCAGCACATTTCTT
GTCCAACTTTTTTTCGATGWCTTCTCCACACTTTTCTGCCACGTTTTCCCTATTTTTTTTGCCACGTCAG
AAAAAAAAAAATTTTTTTCACCACTTTTCTTCCCACCGCCAACAACACCAATGATGTTCTACCTGCCAGA
GTGCCAGTTCTACATATGTTCCGATTTCCTAGCTCTTCAGATTCAGCAACTCCAACTACCAATTTTTGAA
TTCCCACAATCCAACTAATTCCCCGCCATCTTGCMAACTCAGTCCACAATTTCTGTCCAACYACAAATTT
TCAAACTGCAACAACTGTCACTGCCACATGCTATTCAACCGGCAAACAWACGAARCTGTAATGATTTCAA
CAACTGCCATTGATCACTCATTTATCAACCACCAAACACAGCAGCGCAACAGCTTCCACAGTTCTTGTTG
CCACGATTTCGGCAACTACGATTGACTAKTGATTTTTCAGCCAGCAAACACAACTGCTTTGACAACAGCA
AATACAACGAGATACACAACATGCATCGACAACTCCCTCCACAGTTCGTGTTGAATTTCCCATTGCCACT
ATGTTCAATTTTCGACACTGYCATTGACAACGAGATACACAACTGCTTCCACATTTCGTGTTGCATTTCC
CACTGCCATCAACTAGCAAGCACAACATGCATCGACAACACCCTCCACAGTTCGTGTTGCATTTCCCATT
GACATAGTTTATTTGCACTTGCCACAACCAGCAAGCACAACTGCATTGACWACACCCTCCTCATTTCGTG
TTGCATTCCWCCAGTTGTCATCAATCAKCCACGGGTTGTTCTACTTTTGATTGTTCAGCCAGCAAACACA
ACCACAACTGCTTTGACTACACCCTCTTCATTTCGTGTTGCAATTCCCAYTACCACTAGGTTCACATTTC
CCACCGCCATTGACTACTCAAACTACAAGTTGTTCTATCGTCCCTTCTCCAACYAGCAAGCACAACGAGA
TACATGTCTGGGCATTTACAATAGCTTCTACTCATCATTTTGCATCTGCCATGCAATCTGCCCACCACCC
ATCATCCAACCAGCAAACACAACCGCAACGGGCATTGACAACTGCTTCCACTGCTATGACACCACCACTG
ACTACATGTTGTTCACCCAGCAAACATAACACCTTGCACAGTTCAAGTTCAATTTCCCATTCTACAACTG
CAATTTCTACTGGGTCCCCGAGCAGTTTGACTTCCGTAAAATACACCACCCCACAGATCAACTATCCCCY
GCCGGCTTGACTTCCGTAAAATACACTACAAAGCCTACCCCTTGTCTGACTACCCCTCAGTCCCACAGAT
CAACTATCCCCYGCCGGCTTGACTTCCGTAA ... 

etc. etc. etc. Yada Yada Yada 
for 3.18 million base pairs

Let’s simplify a bit here:



We are given an unannoted genome. Think of it as a long linear chromosome.

The goal is to find those regions that code for genes.

For simplicity of exposition, let’s assume that genes are really simple (eg no 
introns)

We can think of walking along the chromosome, annotating each position
     as coding (E) or non-coding (N)..

2. The Gene Finding Problem

7
first last
nucleotide nucleotide

"
non

- coding
" '

-

¥,
+
i. "↳pF

- w w

gene gene gene
I 2 3

I use E because

Glgene) & C Coding)

Conflict with nucleic

acid letters .

→ F F
NNNNNNNNFEEEEEEHNNNNNNNFEEE.cl/HNNNN NNIREEEEEIINNNNNN
c- w -

gene gene gene
I 2 3



3. Hidden Markov Models (HMMs)

An HMM is a Markov Model that emits symbols at each state with different
           probabilities.

Let’s build one for this example:  

You are at a casino and the dealer has two coins. 

One coin is fair:           50% Heads and  50%Tails.

One coin is biased:     90% Heads and 10% Tails.

The dealer uses the following algorithm:

0. Pick the fair coin with 50% probability in secret.

Now repeat the following 10 times

 1. Flip the coin in public and make the result visible. 

 2. In secret, keep the same coin with probability 80%; otherwise swap.

 3. Go to Step 1.

GOAL: For each of the 10 coin tosses, guess which coin she used.

Prob( start in F )=0.5

Before gene finding
-

let's start with a

simple example .

They look
* is identical !
*

☒ MARKOV

MADNESS
*

=

-

um

*

fo¥ "" * biased
Vi "

④ ④ *Twostatesf,B
- = two coins .

U
0.2 U

0.8 0.8

*



3. Hidden Markov Models (HMMs)

An HMM is a Markov Model that emits symbols at each state different 
          probabilities. 

You are at a casino and the dealer has two coins. 
One coin is fair:           50% Heads and  50%Tails.
One coin is biased:     90% Heads and 10% Tails.

0. Pick the fair coin with 50% probability in secret.
Now repeat the following 10 times

 1. Keep the coin in your hand with probability 80%; otherwise swap.
 2. Flip the coin in public and make the result visible.
 3. Go to Step 1.

GOAL: For each of the 10 coin tosses, guess which coin she used.

A walk in an HMM from the dealers perspective:

        state:
emissions:

But the player sees only the emissions. 
States are hidden.

        state:
emissions:.

'

¥

* Emit it :O.5 Emit it : 0.9 *

T: 0.5

④ ④
T : 0.1

-

U
0.2 Lf

0.8 0.8

=

F F B B B B F F

TH H H T H TH

The player's

goal is to

FMFTFTMB.info#oy.=g.uessthis.
T H H H T H T H



3. Hidden Markov Models (HMMs)

Challenge #5: 

What would be your guess for states from the following emissions?

What is the worst guess for states for the same sequence? Why did 
you chose it?..

* Emit a- i. 0.5 Emit it : 0.9 *

T: 0.5

④ ④
T : 0.1

-

U
0.2 Lf

0.8 0.8

emissions : THHHTHHHHTTHAHH
states : ?

-



3. Hidden Markov Models (HMMs)

It’s easy for the dealer to compute the probability because they 
know both the states and the omissions

        state:
emissions:.

Emit it :O .9 *
* Emit a- i. 0.5

T: 0.5

④ ④
T : 0.1

-

U
0.2 Lf

0.8 0.8

F F B B B
Prob / 1- HH HH )

=ProbµtinF) - Problem.it -1in F) • Prob/stay state F)
• Problemit Hin F) -Prob ( F to B)

• Problem .tl/-inB)-Prob(s-ayinB )
• Prob ( emit HinB) •Prob / stay in B)

• Pros ( emit Hi - B)

= § • { so
0.8 • £ .

O iz

• 0.9 • 0-8 • 0.9 . 0.8 - 0.9

= 0.00933



3. Hidden Markov Models (HMMs)

But not easy for the player without knowing the states.....

        state:
emissions:.

Already for a walk with 5 nucleotides, there are 2^5 different state 
combinations

        state:
emissions:.

* Emit it : 0.5 Emit it : 0.9 *

T: 0.5

④ ④
T : 0.1

u
-

0.2 Lf
0.8 0.8

Prob /t-FBBKAMJ-HHHH.ca
set one of 32 possibilities

E- É É E- E) is that the dealerProb / always used
the

fair coin .

= E. I. E. E.¥ - E.F.E.¥ . 1-2=21-6 . (F) 4=0.0064



3. Hidden Markov Models (HMMs)

There are 2^5 different possibilities

        state:
emissions:.

        state:
emissions:.

        state:
emissions:.

        state:
emissions:.

* Emit it : 0.5 Emit it : 0.9 *

T: 0.5

④ ④
T : 0.1

GO.TW
32 0.8 0.8

/
( just for 5

nucleotides ! )

case /
.

F F F F F
Prob / T * * µ A) = 0.0064
Case 2

F F F F B
= 0.0029

Prob / T H H H A)
Case 2

Prob / F F F B F

T H H H H ) = 0.0007
•

•

Case 2
•

B B B B B
Prob / TH A HH ) = 0.0134



3. Hidden Markov Models (HMMs)

Because the states are hidden from the player, the player has to 
consider all possibilities and choose the state sequence with the 
highest probability

This answer has the maximum likelihood of being correct

I

sea -

of length 5

•

F B
1

F B F B

F B F B F B F B

F B F B F B F B F B F B F B F B

FBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFB

&

2
"

possibilities .
1

We want the
a-5

,

32
one with the

highest probability .

f0nly2"°mdeaWhich one has Max prob ? : in-line universe
.



3. Hidden Markov Models (HMMs)

The Viterbi algorithm

Beyond the scope of this course

Beautiful, elegant algorithm that finds the most likely state sequence

Input: a HMM and a emission sequence

Output: a state sequence with max probability

Really fast!! One of the important algorithms known

T : 0.5 0 .

it

:0•5④→£④Input : HATH :-. - HTTT
U

0.2 U )
0.8 0.8

Output : states FFFB . .
- FBBB



3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?

Prob( start in coding E )

→ * I
NNNNNNNNft-EEEEEHNNNNNNNFEEE.cl/HNNNN NNIEEEEEIINNNNNN
c- w -

gene gene gene
I 2 3

"probability of starting
a gene

"

Ninon - coding E- coding /exon
emissions emissions
-

E

A
"

? U.pro?ofendinsU A ?

[ , a gene
"

C ?

G
'

?
-

= ? G ?

T ?
T 2

p .

Does this initial probability even matter ?

HINT : A chromosome might be millions
of base pairs long .



3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?

Prob( start in coding E )

→ F F
NNNNNNNNFEEEEEEHNNNNNNNFEEE.cl/HNNNNNNIEEEEEIINNNNNN
p - w w

gene gene gene
I 2 3

E- coding /exon
Ninon- coding emissions

emissions

①
→① A ?

A
'

? µ-
E

C ?
C ? U G ?
G ? T

?
T ?

=O

p

Nah . Start in non - coding .



3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?

Prob( start in coding E )

For the remaining transition probabilities we need training data.

For example, if we are working with an obscure fungus, 
       we might use a well annotated genome like Baker’s yeast
       to estimate these parameters. 

This is called a “learning set”, a concept central in machine learning. 

→ F F
NNNNNNNNFEEEEEEHNNNNNNNFEEE.cl/HNNNNNNIEEEEEIINNNNNN
p - w w

gene gene gene
I 2 3

"probability of starting
a gene

"

Ninon - coding E- coding /exon
emissions emissions

1

? UA ? ¥
-

£

A ?
?

C ? C ?

G ? =o G ?

T ?
T

?



3. Hidden Markov Models (HMMs) and Gene Finding

How do we estimate the non-coding emissions?

So well
studied
we know

Ñ 1-7 where genes
BAKER's NNNNNEEEEE

,,
NNNNNEEEEEE

,

WNNÉEWN are

V a

YEAST ACGTATC GAA CG TAC TCGAAA GGG
•GGÉT

¥tÉEÉ

Ninon - coding
emissions

A NA /#N= 415 ⑥
→#
E- 0

( NY#N
=3/ is

↳ NG /# N - 511s

4- -1/11=10--4115
f- 15)

#N - total number of non- coding nucleotides .

A 's
Na = total number of non - coding

⇐ g)
Same for NT

,
Nc

,
NG .



3. Hidden Markov Models (HMMs) and Gene Finding

Do the analogous for coding emissions,

So well
studied
we know

Ñ 1-7 where genes
are'"'"""

g⇐⇐"
"⇐⇐⇐"÷÷N

YEAST ACGTATC GAA CG TAC TCGAAA
"

GGG G.GET

A 5/13
N
-

E

↳ U C 413

G 4/13

T 413

f-E- = total number of coding nucleotides 1=13)

E☒ = total number of coding A 's
.

1=5)

Fc
,
EG ,

ET analogous .



3. Hidden Markov Models (HMMs) and Gene Finding

Prob( start in coding E )

In other words, of all positions in the genome, only 3 start a gene. 

r> i→
BAKER's NNNNN

,

EEEEE
,,
NNNNNEEEEEENNNÉENN

a d r r

YEAST ACGTATC GAA CG TAC TCGAAA GGG GGFT

"

probability of starting a gene
"

⑥ ① Asa,

C 2/13

A
'

3hr I
£

G 4113

C 34s

µ ②
T 413

G 5115

-

=01- 4115

1- ?

# of genes
&

Prob ( N to E) =

length of
genome

f- 3 )
28



3. Hidden Markov Models (HMMs) and Gene Finding

Prob( start in coding E )

“For every start, there is an end and vice versa” ancient proverb

r> i→
BAKER's NNNNN

,

EEEEE
,,
NNNNNEEEEEENNNÉEWN

n n r r

YEAST ACGTATC GAA CG TAC TCGAAA GGG GGFT

"

probability of ending a gene
"

C 2/13

A
"

34s ④
→# A 5113

✓ G 4113

C 3115

G 5115 Wh
T 413

T 4/15 = 0

# of genes
Prob ( E to N ) = =

length of
genome

f- 3 )
28



3. Hidden Markov Models (HMMs) and Gene Finding

Prob( start in coding E )

Candida albicans SC5314 chromosome 1

GAGTCACGCCAATCACAAATTCCTTTGAAAAACTTGATTCGACCACATTCACAAGTTTGATTGATTTGAA
AAACTTGATTCGACACCATCCTGCTGTCCATCCGTGAGCCACACAGATTCAGAATTGAGTCGCTGACTAA
GCGGTTAGACATACGTGATATTCACCGACTTTGAGAGTCCCACTAATCGGCTAGACATACGTAAATTACA
TAGCTCCCTCCAATACACACCCTACTTACTATTGTCTTTTTTTAACTTTTTCGTAATCTCTACCCATAAA
AATACACTTTCCCTCCAAATCTCTAATTTACAACTCAACTGAACTTTAATTAACCTCTACTGCCTTAATT
TAAGCTTATTTCTTGTCTATCAGCTGTTTCTGTTTCACCATTTTCACAACTTCTCCCCTAGGTGACATTT
TTTTCTGCTGATTTTTTCTCAAATTCAGCCCAAAAAACTTAAACCAAAACTCAAAATTACAACGCAAACT
CTATTTAGAGTGCCCCTACTACCCCTACTGAGTCTTATTTTGAGTTTACCACCGATTTCTGTGCTCCTCC
TGTCTCCAGATTTCCGGTCTTCGTTCTTTTTTCGATCGAAAACTTTGTAAAACTAAACTAAAAAATTCAC
TCCATTTGACCAACAAASTGCTCAAAATCAGACCAGGCTCACTGCTTCTGCTTTGTCCCTAAAGATTACA
AAAGCTACGCTGCAAAAGAACTTAAAATTGCGTTCCATTATAATCTATACACACCCATCTCCTGCTATCA
CTTCACCTCACGTCCTCCCTGCGCTTGTCCATCCGTGAGTTCAACTACCGCCTCCCTCTTCCCTTGTCCA
CCCGTGATTCGCCAGTCCCTGGCTCTCCATCTTCCACAGATCCTTCACTTGCTTTCCATTGACTATCTTC
TTCTCTTGCCCTAGCTTTTGATTTCCATATTCCTTCAACCATTGTACTAACTCTCTCTTTACTCTGTGCT
TAACTACTATCTCTCTGATCACCTGGCCTGGCGTTATTCTATTTCCAGTTTTTTTTTTTTTCATTGATCC
AACACAACTTCAACTCCCATTCGCTCGGCTCTTGACCCCCTTATCCATTCTCTCAGTACTTCCCGATCCC
TTTTGTTCTTCATTACCCTTTTCTCTGTCTTGCCCTGCTACCCATCCGTGATTYTCCAGCRCTGTTCACT
CCCACGTCCCCGCTGTTGATTGACATTTCCAATTTCACTGACTTTGTTCCCCTACTTTTGCTCACATTTT
TCTGTTCTCAAACTCCTCTCTTGAATTCTCAGCTTGCTGTGTCTCCTTCTTGCCATTACAACTGCTTTTC
TTCACTTGCTTCCTTCTGCTTTGACAACACTGATCATTGACTTGATTTCATTACTTTTCACAAACCCAGT
TTCTAGCTCTATTGACTTCCTCTGCTATCCAGATTTCAAACTTCTTATTGTAACAGTTATAACTGCGTTC
TTCATCTCATCTAATTGATTGATTTGTTGTCGTTGAAGAAAAGTGATATTTTTTGACCAGCACATTTCTT
GTCCAACTTTTTTTCGATGWCTTCTCCACACTTTTCTGCCACGTTTTCCCTATTTTTTTTGCCACGTCAG
AAAAAAAAAAATTTTTTTCACCACTTTTCTTCCCACCGCCAACAACACCAATGATGTTCTACCTGCCAGA
GTGCCAGTTCTACATATGTTCCGATTTCCTAGCTCTTCAGATTCAGCAACTCCAACTACCAATTTTTGAA
TTCCCACAATCCAACTAATTCCCCGCCATCTTGCMAACTCAGTCCACAATTTCTGTCCAACYACAAATTT
TCAAACTGCAACAACTGTCACTGCCACATGCTATTCAACCGGCAAACAWACGAARCTGTAATGATTTCAA
CAACTGCCATTGATCACTCATTTATCAACCACCAAACACAGCAGCGCAACAGCTTCCACAGTTCTTGTTG
CCACGATTTCGGCAACTACGATTGACTAKTGATTTTTCAGCCAGCAAACACAACTGCTTTGACAACAGCA
AATACAACGAGATACACAACATGCATCGACAACTCCCTCCACAGTTCGTGTTGAATTTCCCATTGCCACT
ATGTTCAATTTTCGACACTGYCATTGACAACGAGATACACAACTGCTTCCACATTTCGTGTTGCATTTCC
CACTGCCATCAACTAGCAAGCACAACATGCATCGACAACACCCTCCACAGTTCGTGTTGCATTTCCCATT
GACATAGTTTATTTGCACTTGCCACAACCAGCAAGCACAACTGCATTGACWACACCCTCCTCATTTCGTG
TTGCATTCCWCCAGTTGTCATCAATCAKCCACGGGTTGTTCTACTTTTGATTGTTCAGCCAGCAAACACA
ACCACAACTGCTTTGACTACACCCTCTTCATTTCGTGTTGCAATTCCCAYTACCACTAGGTTCACATTTC
CCACCGCCATTGACTACTCAAACTACAAGTTGTTCTATCGTCCCTTCTCCAACYAGCAAGCACAACGAGA
TACATGTCTGGGCATTTACAATAGCTTCTACTCATCATTTTGCATCTGCCATGCAATCTGCCCACCACCC
ATCATCCAACCAGCAAACACAACCGCAACGGGCATTGACAACTGCTTCCACTGCTATGACACCACCACTG
ACTACATGTTGTTCACCCAGCAAACATAACACCTTGCACAGTTCAAGTTCAATTTCCCATTCTACAACTG
CAATTTCTACTGGGTCCCCGAGCAGTTTGACTTCCGTAAAATACACCACCCCACAGATCAACTATCCCCY
GCCGGCTTGACTTCCGTAAAATACACTACAAAGCCTACCCCTTGTCTGACTACCCCTCAGTCCCACAGAT
CAACTATCCCCYGCCGGCTTGACTTCCGTAA ... 

etc. etc. etc. Yada Yada Yada 
for 3.18 million base pairs

→ F F
NNNNNNNNFEEEEEEHNNNNNNNFE-c.EE/1HNNNN NNIREEEEEIINNNNNN
p - w w

gene gene gene
I 2 3

⑥%emissions emissions

A-
'

34s Gg

-
E

3128 U A 5113
C 31,5 1- 312g

I -428 C 2/13

G 54s G 4/13
= 0

T 4hr T 2/13

ALL Done

← Apply it to our new
unannotated genome .

( Homework exercise)



3. Hidden Markov Models (HMMs) and Gene Finding

Applied this to Candida albicans (Chr 1)

Note how there are more Es in the gene region than outside.  Noisy but … 

N N E E N N

N   N  N   N   N   N   E   E   N   N   N  N   N   N  E   E   E   E   E   E    E   E   E  E   N   N   N   N  N   N   E  E   E    E   E   E  E   N  'II



Toolkit for bio-sequence analysis using HMMs:   
hmmer.org

The package rhmmer gives you access  to it in R.
(My course uses the HMM package in R though.)

There are more mathematically rich HMM tools (not necessarily   
specific to bio):

R packages:  msm, depmixS4, momentuHMM 
       Python:   scikit-learn, HMMLearn

      Julia:   HMMBase

Software and Resources

An alternative non-math and non-bio  presentation 
for HMMs:   

More math-ee but still accessible: 
https://towardsdatascience.com/markov-chains-and-hmms-ceaf2c854788

Louis Serrano



RStudio learn Quiz (R, Python or Julia)



Assignment #4



Points of Reflection

Make sure that you understand the concept of searching for the 
most probable walk in the HMM and why using that walk is a 
reasonable way to “guess” the correct answer. This is a good 
example of mathematical optimization.

Suppose I was really interested in some kind of strange Archaea that 
lives on the bottom of the ocean on the side of a volcano. In fact let’s 
suppose that it’s a completely newly discovered species. Explain 
some of the problems that might arise using a gene finding HMM for 
a species that’s very different from anything we’ve seen before.

Instead of gene finding, suppose you wanted to predict the 
secondary structural elements of a nascent amino acid chain. That 
is, do you want to be able to sub strains of the sequence the 
correspond to turns, helixes, and beta sheets. Describe how you 
would do that with an HMM. Specifically describe the structure of the 
HMM but also how you would learn the probabilities to parameterize 
the HMM.

*


