Hidden Markov Models (HMMs)

Some theory, some games, some applications
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Plan for the day

1. Markov Models (15 mins)
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2. Prokaryotic gene finding (10 mins)

3. Hidden Markov Models (15 mins)
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4. Puzzles, exercises, and points of reflection (5 mins)



1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states

(3) Probabilities for the starting states 7./
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Prob( starting in X )=4/5 Prob( starting in Y )=1/5
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We can generate “walks” through the Markov model by choosing random
numbers between 0 and 1. N
Suppose the =k o pumber B 0-(.
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1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states

(3) Probabilities for the starting states

Boring Example 7'/8
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We are in state X. We pick a random number to determine where next. '
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1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states

(3) Probabilities for the starting states

Boring Example 7'/8
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Prob( starting in X )=4/5 Prob( starting in Y )=1/5

We repeat for as long as we want, each time picking a random number
and using the transition probabilities to dictate the next step in our walk,

shade: XY XXHK -+

A nice set of animations




1. Markov Models

A Markov Model consists of 3 things
(1) A set of states ACGT

(2) Transition probabilities between states

(3) Probabilities for the starting states Prob( startinA) = 1/4
Prob('startinT) = 1/4
Prob('startinC) =20
Prob( startin G ) =
0-4
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The transition probabilities must sum to 1 for each node.
(otherwise they wouldn’t be probabilities.)
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Prob( Heads ) + - Prob( Tails ) =1
Prob( win lottery ) + - Prob( don’t win lottery )= 1
Prob(diceis1). + - Prob(diceis2)+ .... -+. Prob(diceis6)=1
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1. Markov Models

A Markov Model consists of 3 things
(1) A set of states ACGT
(2) Transition probabilities between states

(3) Probabilities for the starting states Prob( start in A

Prob('startin T
Prob( startin C
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1. Markov Models

A network can be a bit messy so sometimes we use a transition matrix
(and this gets us ready to dig out all that old linear algebra).

A | 0.4 0.0 0,2 0.1

C .25 0.95 025 0.5

C. | &3 o2 0.1 p.3

T | 0.l oL 0l Ot




1. Markov Models
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Ao C g T
A | o 0.2 0,2 0.2

25 0.as Prob( startinA)=1/4
e Prob( startin T ) = 1/4

o Prob( startinC)=0
G| o3 9.3 01 03 Prob( startin G) =1/2

T | 0.1 oL o 0.F

Let’s create a random chromosome by walking through the Markov model.

Step 0: Pick a number at random to determine where to start
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Step 2: Transit to A; Goto to Step 1. Vi J
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1. Markov Models

Ok, so we could keep iterating like this and create a random gene, or
chromosome or genome ...

Here are some challenges to help your understanding of Markov models

Challenge 1: What does a random walk look like in this Markov model?

Q/gﬁ\fl
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Challenge 2: Create a Markov model that repeats ABC an arbitrary number
— of times (could be 1 or more times) but the last one ends in X

Prob(s-tu-t -A) =1

ABCX

e

ABCABCABCX

—_—

ABCABCABCABCX

—_— e e

Only that sequence is allowed!
All other patterns are disallowed.



1. Inverting the Markov Models

If | give you a Markov Model as before and a gene,
how do you figure out the probability of that gene?

’h; Some Made,l oS
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0. 0. 0.0 0.1
A LE O D Prob( startin A) =.25
¢ | e.as  0.25 025 0.5 (A> — @ Prob( startin T ) =.25

- Prob( startinC )=0
_?m« O:\ 0.2 ’T % Prob( startin G)=.5
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Gene of interest: TGCTCAAA g



1. Inverting the Markov Models

If | give you a Markov Model as before and a gene,
how do you figure out the probability of that gene?
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5 0aS Prob( startin A) = .25
c.|.0:25 025 07 ' Prob( startin T ) =.25

-?ﬂM Prob( startinC)=0
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Gene of interest: T'ccTcaaa

What is the probability of starting with state/nucleotide T? 1/4



1. Inverting the Markov Models

If | give you a Markov Model as before and a gene,
how do you figure out the probability of that gene?
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Gene of interest: TGcTcana

T

What is the probability of starting with state/nucleotide T? 0.25

We are in state T; what is the probability of transiting to G? 0.1



1. Inverting the Markov Models

If | give you a Markov Model as before and a gene,
how do you figure out the probability of that gene?
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Gene of interest: TGCTCAAA

T

Prob( startinA) = .25
Prob( startinT)=.25
Prob( startinC)=0

Prob(startinG)=.5

What is the probability of starting with state/nucleotide T? 0.25

We are in state T; what is the probability of transiting to G? 0.1

We are in state G; what is the probability of transiting to C? 0.3

(And so on and so forth for the remainder of our baby gene)



1. Inverting the Markov Models

If | give you a Markov Model as before and a gene,
how do you figure out the probability of that gene?
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A (L /\> Prob( startinA) = .25
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Gene of interest: TGCTCAAA

What is the probability of starting with state/nucleotide T? 0.25
We are in state T; what is the probability of transiting to G? 0.1
We are in state G; what is the probability of transiting to C? 0.3
We are in state C; what is the probability of transiting to T? 0.25
We are in state T; what is the probability of transiting to C? 0.1
We are in state C; what is the probability of transiting to A? 0.25
We are in state A; what is the probability of transiting to A? 0.4
We are in state A; what is the probability of transiting to A? 0.4

So we want that probability that all these things happen. This is the joint probability.

Prob(T) * Prob(T to G) * Prob(G to C) * Prob(C to T) * Prob(T to C)
* Prob(C to'A) * Prob(Ato A) * Prob(A to A)

=0.25*0.1%*0.3*0.25*0.1*0.25*0.4*0.4 = 0.0000075



L

Challenge #3: Using the same Markov Model, calculate the probability of

the following sequence: GCAACTAG

4
A Q T
A | o 0.2 0.2 0.1
9:25 - .25 025 025
G- .3 0.2 0.1 0.3
T | .1 oL o0l 0.¥F

Prob( startinA) = .25
Prob( startin T) = .25
Prob( startinC)=0

Prob( startin G) =.5



1. Inverting the Markov Models

If | give you a Markov Model as before and a gene,
how do you figure out the probability of that gene?

Prob( Gene of Interest TGCTCAAA )= 0.0000075

Why in the world is this even remotely interesting or important?
Fair question. First, it's true. We typically don’t care about the probably of 0.0000075
itself. But. However.

Usually the Markov Model is built in a way that it captures some salient aspect of
biology.

For example, we could build a Markov Model to capture the essence of “coding DNA"
Challenge #4: How would you build such a Markov model for coding DNA of

Baker’s yeast? That is, how would you determine the transition probabilities
and the initial probabilities for coding DNA in Baker’s Yeast?

So that probability measures to some extent how “realistic” a nucleic acid sequence
is and how likely it would actually occur in nature.

This is at the heart of today’s example of using Hidden Markov Models to find
genes in genomes.

Challenge #4 corresponds to Assignment 3, Question #1 where you are asked to do
this in R for Chromosome 1 of Baker’s Yeast.



2. The Gene Finding Problem

Candida albicans SC5314 chromosome 1

GAGTCACGCCAATCACAAATTCCTTTGAAAAACTTGATTCGACCACATTCACAAGTTTGATTGATTTGAA
AAACTTGATTCGACACCATCCTGCTGTCCATCCGTGAGCCACACAGATTCAGAATTGAGTCGCTGACTAA
GCGGTTAGACATACGTGATATTCACCGACTTTGAGAGTCCCACTAATCGGCTAGACATACGTAAATTACA
TAGCTCCCTCCAATACACACCCTACTTACTATTGTCTTTTTTTAACTTTTTCGTAATCTCTACCCATAAA
AATACACTTTCCCTCCAAATCTCTAATTTACAACTCAACTGAACTTTAATTAACCTCTACTGCCTTAATT
TAAGCTTATTTCTTGTCTATCAGCTGTTTCTGTTTCACCATTTTCACAACTTCTCCCCTAGGTGACATTT
TTTTCTGCTGATTTTTTCTCAAATTCAGCCCAAAAAACTTAAACCAAAACTCAAAATTACAACGCAAACT
CTATTTAGAGTGCCCCTACTACCCCTACTGAGTCTTATTTTGAGTTTACCACCGATTTCTGTGCTCCTCC
TGTCTCCAGATTTCCGGTCTTCGTTCTTTTTTCGATCGAAAACTTTGTAAAACTAAACTAAAAAATTCAC
TCCATTTGACCAACAAASTGCTCAAAATCAGACCAGGCTCACTGCTTCTGCTTTGTCCCTAAAGATTACA
AAAGCTACGCTGCAAAAGAACTTAAAATTGCGTTCCATTATAATCTATACACACCCATCTCCTGCTATCA
CTTCACCTCACGTCCTCCCTGCGCTTGTCCATCCGTGAGTTCAACTACCGCCTCCCTCTTCCCTTGTCCA
CCCGTGATTCGCCAGTCCCTGGCTCTCCATCTTCCACAGATCCTTCACTTGCTTTCCATTGACTATCTTC
TTCTCTTGCCCTAGCTTTTGATTTCCATATTCCTTCAACCATTGTACTAACTCTCTCTTTACTCTGTGCT
TAACTACTATCTCTCTGATCACCTGGCCTGGCGTTATTCTATTTCCAGTTTTTTTTTTTTTCATTGATCC
AACACAACTTCAACTCCCATTCGCTCGGCTCTTGACCCCCTTATCCATTCTCTCAGTACTTCCCGATCCC
TTTTGTTCTTCATTACCCTTTTCTCTGTCTTGCCCTGCTACCCATCCGTGATTYTCCAGCRCTGTTCACT
CCCACGTCCCCGCTGTTGATTGACATTTCCAATTTCACTGACTTTGTTCCCCTACTTTTGCTCACATTTT
TCTGTTCTCAAACTCCTCTCTTGAATTCTCAGCTTGCTGTGTCTCCTTCTTGCCATTACAACTGCTTTTC
TTCACTTGCTTCCTTCTGCTTTGACAACACTGATCATTGACTTGATTTCATTACTTTTCACAAACCCAGT
TTCTAGCTCTATTGACTTCCTCTGCTATCCAGATTTCAAACTTCTTATTGTAACAGTTATAACTGCGTTC
TTCATCTCATCTAATTGATTGATTTGTTGTCGTTGAAGAAAAGTGATATTTTTTGACCAGCACATTTCTT
GTCCAACTTTTTTTCGATGWCTTCTCCACACTTTTCTGCCACGTTTTCCCTATTTTTTTTGCCACGTCAG
AAAAAAAAAAATTTTTTTCACCACTTTTCTTCCCACCGCCAACAACACCAATGATGTTCTACCTGCCAGA
GTGCCAGTTCTACATATGTTCCGATTTCCTAGCTCTTCAGATTCAGCAACTCCAACTACCAATTTTTGAA
TTCCCACAATCCAACTAATTCCCCGCCATCTTGCMAACTCAGTCCACAATTTCTGTCCAACYACAAATTT
TCAAACTGCAACAACTGTCACTGCCACATGCTATTCAACCGGCAAACAWACGAARCTGTAATGATTTCAA
CAACTGCCATTGATCACTCATTTATCAACCACCAAACACAGCAGCGCAACAGCTTCCACAGTTCTTGTTG
CCACGATTTCGGCAACTACGATTGACTAKTGATTTTTCAGCCAGCAAACACAACTGCTTTGACAACAGCA
AATACAACGAGATACACAACATGCATCGACAACTCCCTCCACAGTTCGTGTTGAATTTCCCATTGCCACT
ATGTTCAATTTTCGACACTGYCATTGACAACGAGATACACAACTGCTTCCACATTTCGTGTTGCATTTCC
CACTGCCATCAACTAGCAAGCACAACATGCATCGACAACACCCTCCACAGTTCGTGTTGCATTTCCCATT
GACATAGTTTATTTGCACTTGCCACAACCAGCAAGCACAACTGCATTGACWACACCCTCCTCATTTCGTG
TTGCATTCCWCCAGTTGTCATCAATCAKCCACGGGTTGTTCTACTTTTGATTGTTCAGCCAGCAAACACA
ACCACAACTGCTTTGACTACACCCTCTTCATTTCGTGTTGCAATTCCCAYTACCACTAGGTTCACATTTC
CCACCGCCATTGACTACTCAAACTACAAGTTGTTCTATCGTCCCTTCTCCAACYAGCAAGCACAACGAGA
TACATGTCTGGGCATTTACAATAGCTTCTACTCATCATTTTGCATCTGCCATGCAATCTGCCCACCACCC
ATCATCCAACCAGCAAACACAACCGCAACGGGCATTGACAACTGCTTCCACTGCTATGACACCACCACTG
ACTACATGTTGTTCACCCAGCAAACATAACACCTTGCACAGTTCAAGTTCAATTTCCCATTCTACAACTG
CAATTTCTACTGGGTCCCCGAGCAGTTTGACTTCCGTAAAATACACCACCCCACAGATCAACTATCCCCY
GCCGGCTTGACTTCCGTAAAATACACTACAAAGCCTACCCCTTGTCTGACTACCCCTCAGTCCCACAGAT
CAACTATCCCCYGCCGGCTTGACTTCCGTAA ...

etc. etc. etc. Yada Yada Yada
for 3.18 million base pairs

Let’s simplify a bit here:



2. The Gene Finding_; Problem

We are given an unannoted genome. Think of it as a long linear chromosome.
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The goal is to find those regions that code for genes.
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For simplicity of exposition, let's assume that genes are really simple (eg no
introns)

We can think of walking along the chromosome, annotating each position

as coding (E) or non-coding (N).. ‘: use € becanse
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3. Hidden Markov Models (HMMs) - lebe shact wth
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An HMM is a Markov Model that emits symbols at each state with different

probabilities.
Let’s build one for this example: L\e\/ loa
/%" You are at a casino and the dealer has two coins. de""h Ca.[ .
5( One coin is fair: 50% Heads and 50%Tails.
)fe One coin is biased:  90% Heads and 10% Tails. HAKKO\/

The dealer uses the following algorithm:

MADNESS
0. Pick the fair coin with 50% probability in secret. -
—

Now repeat the following 10 time_s
1. Flip the coin in public and make the result visible.
~—— A
% 2. In secret, keep the same coin with probability 80%; otherwise swap.

3. Go to Step 1.

GOAL: For each of the 10 coin tosses, guess which coin she used.

o \SJ o ¢

X Twe sta SF(%

- —_ “(':_\)D Coc s+

O-% 0.3

Prob( start in F )=0.5



3. Hidden Markov Models (HMMs)

An HMM is a Markov Model that emits symbols at each state different
probabilities.

You are at a casino and the dealer has two coins.

One coin is fair: 50% Heads and 50%Tails. X“
One coin is biased:  90% Heads and 10% Tails.

0. Pick the fair coin with 50% probability in secret.
Now repeat the following 10 times

1. Keep the coin in your hand with probability 80%; otherwise swap.
2. Flip the coin in public and make the result visible.
3. Go to Step 1.

GOAL: For each of the 10 coin tosses, guess which coin she used.

¥ Bt €105

T, 0.5 o-*
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A walk in an HMM from the dealers perspective:

_—

state:F:T:6 B B 8 ¢ F
emissions: T W K [-\— T W T S

But the player sees only the emissions. The (?}‘1?;’
States are hidden. Goal 15

| qeee\hmagagysr

emissions:. T Y H- H T W T "



3. Hidden Markov Models (HMMs)

Challenge #5:

What would be your guess for states from the following emissions?

Cmissions T RK HTHH\—\HTTHAHH

?
s +.les ‘

What is the worst guess for states for the same sequence? Why did
you chose it?..



3. Hidden Markov Models (HMMs)

It's easy for the dealer to compute the probability because they
know both the states and the omissions
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3. Hidden Markov Models (HMMs)

emissions:. T W H H H

Already for a walk with 5 nucleotides, there are 2”5 different state
combinations

CC{%\ One aé 32 P"SSL‘\\"H‘;
: he 3&-&\ Vv
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3. Hidden Markov Models (HMMs)

w09 O.%
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There are 2"5 different possibilities (dus’l’ for g wwi“’["leé . 5
Case |

. FFFE EF - L
state: - D.00
?rol’( emissions:.  C % & H H> Y

Case 2

Peob state: F FE E DY _ plo029
ro emissions:. T \ & H K
Case 2
? L state: FFF B F = (.0090 *+
ro emissions:. € % & H H
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Case L e

tate: B B BB 6\ _
?rol’( emisgic?nz:. T ¥\ & H H> Z 0.013%



3. Hidden Markov Models (HMMs)

Because the states are hidden from the player, the player has to
consider all possibilities and choose the state sequence with the

highest probability

This answer has the maximum likelihood of being correct
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3. Hidden Markov Models (HMMs)

The Viterbi algorithm

Beyond the scope of this course

Beautiful, elegant algorithm that finds the most likely state sequence

Input: a HMM and a emission sequence
Output: a state sequence with max probability

Really fast!! One of the important algorithms known
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3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?
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3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?
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3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?
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For the remaining transition probabilities we need training data.
For example, if we are working with an obscure fungus,
we might use a well annotated genome like Baker’s yeast
to estimate these parameters.

This is called a “learning set”, a concept central in machine learning.



3. Hidden Markov Models (HMMs) and Gene Finding o well
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3. Hidden Markov Models (HMMs) and Gene Finding
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Do the analogous for coding emissions,
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3. Hidden Markov Models (HMMs) and Gene Finding

. L 7 r
Raxers wonnw NNNNY PN ZER M

£

\{EAST ACGTA ca Thac 4TS tT

3&' o'p ‘52‘/@5

\ -\'L\ a€
O:S %evwmf,

3
23

In other words, of all positions in the genome, only 3 start a gene.



3. Hidden Markov Models (HMMs) and Gene Finding
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“For every start, there is an end and vice versa” ancient proverb



3. Hidden Markov Models (HMMs) and Gene Finding
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3. Hidden Markov Models (HMMs) and Gene Finding

Note how there are more Es in the gene region than outside. Noisy but ...
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Software and Resources

Toolkit for bio-sequence analysis using HMMs:

: H M M ER hmmer.org

The package rhmmer gives you access toitin R.
(My course uses the HMM package in R though.)

An alternative non-math and non-bio presentation
for HMMs: Louis Serrano

More math-ee' but

still accessible:
http a arkov-chains-and-|

There are more mathematically rich HMM tools (not necessarily
specific to bio):

R packages: msm, depmixS4, momentuHMM
Python: = scikit-learn, HMMLearn
Julia: HMMBase



RStudio learn Quiz (R, Python or Julia)

The following questions should help you understand if you understood the lecture material:

Hidden Markov Models
Quiz
Start Over Which of the following statements are correct (Markov Models):
(O The sum of the probabilities of all transitions to a node X must sum to one.
(J The starting state probablities must be equal.
(0 Transition probabailities may be 0.
(O The probability of any walk is greater than or equal to 0.

Which of the following are correct (Hidden Markov Models):
(O The emission probabilities are not necessarily equal.

O The same symbols must be emitted at each state

(O The sum of emission probabilities at each node must sum to 1.

O The most likely walk found by Viterbi is always the correct true walk.

Create a random walk with the following two-state HMM (use the runif function):

## [1] "Transition probs:

## X
## X 0.3 0.
## Y 0.7 0.

© N K

## [1] "Emissions:"

## X Y
## A 0.1 0.25



Assignment #4

You might consider (but it is not mandatory) using R Markdown to write your answers.
50 total marks.

Question 1 [points 10] Using the S. cerevisiae (Baker’s yeast) data that we imported into R in Lectures 13 and 14, show R
code of how you would estimate the frequency of A, C, G, T nucleotides in coding regions only. Use only chromosome 1.

Question 2 [points 10] Using the S. cerevisiae (Baker’s yeast) data that we imported into R in Lectures 13 and 14, show R
code of how you would estimate the frequency of A, C, G, T nucleotides in non-coding regions only. Use only chromosome
1. Comment on the differences bewteen the two matrices? Do you believe any observed differences are significant?
Comment on how you might test significance.

Question 3 [points 20] Using the HMM package in R , implement your model. The documentation for this package is here.
Note that you might want to look at the dishonestCasino() function that I wrote to help you with the concepts here. Perhaps
follow the viterbi function and the example there. Show your code. Apply it back to chromosome 1. Apply it chromosome 2
too.

Questiom 4 [points 10] Compute the specificity, sensitivity and accuracy on both chromosomes individually. Comment on
your findings.

Good luck!



Points of Reflection

Make sure that you understand the concept of searching for the
most probable walk in the HMM and why using that walk is a
reasonable way to “guess” the correct answer. This is a good
example of mathematical optimization.

Suppose | was really interested in some kind of strange Archaea that
lives on the bottom of the ocean on the side of a volcano. In fact let’s
suppose that it's a completely newly discovered species. Explain
some of the problems that might arise using a gene finding HMM for
a species that’s very different from anything we’ve seen before.

Instead of gene finding, suppose you wanted to predict the
secondary structural elements of a nascent amino acid chain. That
is, do you want to be able to sub strains of the sequence the
correspond to turns, helixes, and beta sheets. Describe how you
would do that with an HMM. Specifically describe the structure of the
HMM but also how you would learn the probabilities to parameterize
the HMM.



