Hidden Markov Models (HMMs)

Some theory, some games, some applications

Mike Hallett hallett.mike.t@gmail.com http://mikehallett:science

The full course
is availabe here

Lecture 14
BIOCHEM 3xxxA: Data science for the Life Sciences, Sept 162021
This booklet: https://hallett-biology-datascience.netlify.app/

yo

Plan for the day

2. Prokaryotic gene finding (10 mins)
3. Hidden Markov Models (15 mins)

Hidden Andrei Andreyevich Markov
4. Puzzles, exercises, and points of reflection (5 mins)

1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states
(3) Probabilities for the starting states

$\operatorname{Prob}($ starting in X$)=4 / 5 \quad \operatorname{Prob}($ starting in $Y)=1 / 5$

1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states
(3) Probabilities for the starting states

We can generate "walks" through the Markov model by choosing random numbers between 0 and 1 . Suppose the random number is 0.1 .

1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states
(3) Probabilities for the starting states

Boring Example

$$
\operatorname{Prob}(\text { starting in } X)=4 / 5 \quad \operatorname{Prob}(\text { starting in } Y)=1 / 5
$$

We are in state X. We pick a random number to determine where next. ,'

new random number 0.8 walk
state: XY

1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states
(3) Probabilities for the starting states

Boring Example

$$
\text { Prob }(\text { starting in } X)=4 / 5 \quad \operatorname{Prob}(\text { starting in } Y)=1 / 5
$$

We repeat for as long as we want, each time picking a random number and using the transition probabilities to dictate the next step in our walk,

1. Markov Models

A Markov Model consists of 3 things
(1) A set of states

$$
\mathrm{A}, \mathrm{C}, \mathrm{G} ; \mathrm{T}
$$

(2) Transition probabilities between states

The transition probabilities must sum to 1 for each node. (otherwise they wouldn't be probabilities.)

```
Prob(Heads ) + Prob(Tails ) = 1
Prob( win lottery ) + . Prob( don't win lottery ) = 1
Prob(dice is 1 ) + Prob(dice is 2 ) + ... + Prob(dice is 6 ) =. 1
```

1. Markov Models

A Markov Model consists of 3 things
(1) A set of states
(2) Transition probabilities between states
(3) Probabilities for the starting states

Prob(start in A) $=1 / 4$
$\operatorname{Prob}($ start in $T)=1 / 4$
$\operatorname{Prob}($ start in C $)=0$
$\operatorname{Prob}($ start in G $)=$

1. Markov Models

A Markov Model consists of 3 things
(1) A set of states

A, C, G, T
(2) Transition probabilities between states
(3) Probabilities for the starting states

Prob $($ start in A $)=1 / 4$
$\operatorname{Prob}($ start in $T)=1 / 4$
$\operatorname{Prob}($ start in C $)=0$
$\operatorname{Prob}($ start in G $)=$

1. Markov Models

A network can be a bit messy so sometimes we use a transition matrix (and this gets us ready to dig out all that old linear algebra).

1. Markov Models

Let's create a random chromosome by walking through the Markov model.
Step 0: Pick a number at random to determine where to start

Step 1: Pick a random number to determine where to go from G

Step 2: Transit to A; Goto to Step 1.

Step 1: Pick a random number to determine where to go from A

1. Markov Models

Ok, so we could keep iterating like this and create a random gene, or chromosome or genome ...

Here are some challenges to help your understanding of Markov models

Challenge 1: What does a random walk look like in this Markov model?

Challenge 2: Create a Markov model that repeats ABC an arbitrary number of times (could be 1 or more times) but the last one ends in X

ABCX
ABCABCABCX
ABCABCABCABCX
Only that sequence is allowed! All other patterns are disallowed.

1. Inverting the Markov Models

If I give you a Markov Model as before and a gene, how do you figure out the probability of that gene?

	to			
	A	C	G	T
A	0.4	0.2	0.2	0.2
from		0.25	0.25	0.25
G	0.3	0.3	0.1	0.3
T	0.1	0.1	0.1	0.7

Same model as before.

$\operatorname{Prob}($ start in $A)=.25$
Prob(start in T $)=.25$
Prob(start in C) $=0$
$\operatorname{Prob}($ start in G $)=.5$

Bit small but

Gene of interest: TGCTCAAA goad enough.

1. Inverting the Markov Models

If I give you a Markov Model as before and a gene, how do you figure out the probability of that gene?

	A	C	G	T
A	0.4	0.2	0.2	0.2
C	0.25	0.25	0.25	0.25
G	0.3	0.3	0.1	0.3
T	0.1	0.1	0.1	0.7

$\operatorname{Prob}($ start in A $)=.25$ $\operatorname{Prob}($ start in T $)=.25$
Prob(start in C) $=0$
$\operatorname{Prob}($ start in G $)=.5$

Gene of interest: Tgctcana

What is the probability of starting with state/nucleotide T? . 1/4

1. Inverting the Markov Models

If I give you a Markov Model as before and a gene, how do you figure out the probability of that gene?

Gene of interest: tGстсААА

What is the probability of starting with state/nucleotide T? 0.25
We are in state T ; what is the probability of transiting to G ? 0.1

1. Inverting the Markov Models

If I give you a Markov Model as before and a gene, how do you figure out the probability of that gene?

	A	C	G	T
A	0.4	0.2	0.2	0.2
C	0.25	0.25	0.25	0.25
G	0.3	0.3	0.1	0.3
T	0.1	0.1	0.1	0.7

Prob $($ start in A $)=.25$
$\operatorname{Prob}($ start in $T)=.25$
Prob(start in C) $=0$ Prob(start in G) $=.5$

Gene of interest: $\mathrm{TGC}_{\text {TCAAA }}$

What is the probability of starting with state/nucleotide T? 0.25
We are in state T; what is the probability of transiting to G ? 0.1
We are in state G; what is the probability of transiting to C ? 0.3
(And so on and so forth for the remainder of our baby gene)

1. Inverting the Markov Models

If I give you a Markov Model as before and a gene, how do you figure out the probability of that gene?

	to			
	A	C	G	T
A	0.4	0.2	0.2	0.2
C	0.25	0.25	0.25	0.25
G	0.3	0.3	0.1	0.3
T	0.1	0.1	0.1	0.7

Prob $($ start in A $)=.25$
$\operatorname{Prob}($ start in $T)=.25$
$\operatorname{Prob}($ start in C) $=0$
Prob $($ start in G $)=.5$

Gene of interest: TGCTCAAA
What is the probability of starting with state/nucleotide T? 0.25
We are in state T ; what is the probability of transiting to G ? 0.1
We are in state G ; what is the probability of transiting to C ? 0.3
We are in state C; what is the probability of transiting to T ? 0.25
We are in state T; what is the probability of transiting to C ? 0,1
We are in state C; what is the probability of transiting to A? 0.25
We are in state A; what is the probability of transiting to A ? 0.4
We are in state A; what is the probability of transiting to A ? $0: 4$

So we want that probability that all these things happen. This is the joint probability.

$$
\begin{array}{r}
\operatorname{Prob}(T) * \operatorname{Prob}(T \text { to } G) *{ }^{*} \operatorname{Prob}(G \text { to } C) * \operatorname{Prob}(C \text { to } T) * \operatorname{Prob}(T \text { to } C) \\
=0.25 * 0.1 * 0.3 * 0.25 * 0.1 * 0.25 * 0.4 * 0.4=0.0000075
\end{array}
$$

Challenge \#3: Using the same Markov Model, calculate the probability of the following sequence: GCAACTAG

1. Inverting the Markov Models

If I give you a Markov Model as before and a gene, how do you figure out the probability of that gene?
$\operatorname{Prob}($ Gene of Interest TGCTCAAA $)=0.0000075$

Why in the world is this even remotely interesting or important?

Fair question. First, it's true. We typically don't care about the probably of 0.0000075 itself. But. However.

Usually the Markov Model is built in a way that it captures some salient aspect of biology.

For example, we could build a Markov Model to capture the essence of "coding DNA" $\left\{\begin{array}{l}\text { Challenge \#4: How would you build such a Markov model for coding DNA of } \\ \text { Baker's yeast? That is, how would you determine the transition probabilities } \\ \text { and the initial probabilities for coding DNA in Baker's Yeast? }\end{array}\right\}$

So that probability measures to some extent how "realistic" a nucleic acid sequence is and how likely it would actually occur in nature.

This is at the heart of today's example of using Hidden Markov Models to find genes in genomes.

Challenge \#4 corresponds to Assignment 3, Question \#1 where you are asked to do this in R for Chromosome 1 of Baker's Yeast.

2. The Gene Finding Problem

Candida albicans SC5314 chromosome 1

Abstract

GAGTCACGCCAATCACAAATTCCTTTGAAAAACTTGATTCGACCACATTCACAAGTTTGATTGATTTGAA AAACTTGATTCGACACCATCCTGCTGTCCATCCGTGAGCCACACAGATTCAGAATTGAGTCGCTGACTAA GCGGTTAGACATACGTGATATTCACCGACTTTGAGAGTCCCACTAATCGGCTAGACATACGTAAATTACA TAGCTCССТССААТАСАСАСССТАСТTAСТАТTGTСТTTTTTTAACTTTTTCGTAATCTCTACCCATAAA ААТАСАСТТТСССТССАААТСТСТААТТТАСААСТСААСТGААСТТТААТТААССТСТАСТGССТТААТТ TAAGCTTATTTCTTGTCTATCAGCTGTTTCTGTTTCACCATTTTCACAACTTCTCCCCTAGGTGACATTT TTTTCTGCTGATTTTTTCTCAAATTCAGCCCAAAAAACTTAAACCAAAACTCAAAATTACAACGCAAACT СТАTTTAGAGTGCCCCTACTACCССTACTGAGTCTTATTTTGAGTTTACCACCGATTTCTGTGCTCCTCC TGTCTCCAGATTTCCGGTCTTCGTTCTTTTTTCGATCGAAAACTTTGTAAAACTAAACTAAAAAATTCAC TCCATTTGACCAACAAASTGCTCAAAATCAGACCAGGCTCACTGCTTCTGCTTTGTCCCTAAAGATTACA AAAGCTACGCTGCAAAAGAACTTAAAATTGCGTTCCATTATAATCTATACACACCCATCTCCTGCTATCA СТTСАССТСАСGTССТСССTGCGСTTGTCСАTCCGTGAGTTCAACTACCGCCTСССТСTTСССТTGTССА CCCGTGATTCGCCAGTCCCTGGCTCTCCATCTTCCACAGATCCTTCACTTGCTTTCCATTGACTATCTTC TTСТСТTGСССТАGСТTTTGATTTССАТАТTССТТСААССАТTGTAСТААСТСТСТСТTTAСТСТGTGСТ TAACTACTATCTCTCTGATCACCTGGCCTGGCGTTATTCTATTTCCAGTTTTTTTTTTTTTCATTGATCC ААСАСААСТТСААСТСССАТТСGСТСGGСТСТTGАСССССТТАТССАТТСТСТСАGTAСТTСССGATCСС TTTTGTTCTTCATTACCCTTTTCTCTGTCTTGCCCTGCTACCCATCCGTGATTYTCCAGCRCTGTTCACT CCCACGTCCCCGCTGTTGATTGACATTTCCAATTTCACTGACTTTGTTCCCCTACTTTTGCTCACATTTT TTCACTTGCTTCCTTCTGCTTTGACAACACTGATCATTGACTTGATTTCATTACTTTTCACAAACCCAGT TTCTAGCTCTATTGACTTCCTCTGCTATCCAGATTTCAAACTTCTTATTGTAACAGTTATAACTGCGTTC TTCATCTCATCTAATTGATTGATTTGTTGTCGTTGAAGAAAAGTGATATTTTTTGACCAGCACATTTCTT GTCCAACTTTTTTTCGATGWCTTCTCCACACTTTTCTGCCACGTTTTCCCTATTTTTTTTGCCACGTCAG АААААААААААТТТTTTTCACСАСТТТTСТТСССАССGССААСААСАССААТGATGTTCTACCTGCCAGA GTGCCAGTTCTACATATGTTCCGATTTCCTAGCTCTTCAGATTCAGCAACTCCAACTACCAATTTTTGAA TTCCCACAATCCAACTAATTCCCCGCCATCTTGCMAACTCAGTCCACAATTTCTGTCCAACYACAAATTT TCAAACTGCAACAACTGTCACTGCCACATGCTATTCAACCGGCAAACAWACGAARCTGTAATGATTTCAA САACTGCCATTGATCACTCATTTATCAACCACCAAACACAGCAGCGCAACAGCTTCCACAGTTCTTGTTG CCACGATTTCGGCAACTACGATTGACTAKTGATTTTTCAGCCAGCAAACACAACTGCTTTGACAACAGCA

 AATACAACGAGATACACAACATGCATCGACAACTCCCTCCACAGTTCGTGTTGAATTTCCCATTGCCACT ATGTTCAATTTTCGACACTGYCATTGACAACGAGATACACAACTGCTTCCACATTTCGTGTTGCATTTCC CACTGCCATCAACTAGCAAGCACAACATGCATCGACAACACCCTCCACAGTTCGTGTTGCATTTCCCATT GACATAGTTTATTTGCACTTGCCACAACCAGCAAGCACAACTGCATTGACWACACCCTCCTCATTTCGTG TTGCATTCCWCCAGTTGTCATCAATCAKCCACGGGTTGTTCTACTTTTGATTGTTCAGCCAGCAAACACA ACCACAACTGCTTTGACTACACCCTCTTCATTTCGTGTTGCAATTCCCAYTACCACTAGGTTCACATTTC ССАССGССАTTGACTACTCAAACTACAAGTTGTTCTATCGTCCCTTCTCCAACYAGCAAGCACAACGAGA TACATGTCTGGGCATTTACAATAGCTTCTACTCATCATTTTGCATCTGCCATGCAATCTGCCCACCACCC ATCATCCAACCAGCAAACACAACCGCAACGGGCATTGACAACTGCTTCCACTGCTATGACACCACCACTG ACTACATGTTGTTCACCCAGCAAACATAACACCTTGCACAGTTCAAGTTCAATTTCCCATTCTACAACTG CAATTTCTACTGGGTCCCCGAGCAGTTTGACTTCCGTAAAATACACCACCCCACAGATCAACTATCCCCY GCCGGCTTGACTTCCGTAAAATACACTACAAAGCCTACCCCTTGTCTGACTACCCCTCAGTCCCACAGAT CAACTATCCCCYGCCGGCTTGACTTCCGTAA . . .etc. etc. etc. Yada Yada Yada

for 3.18 million base pairs

Let's simplify a bit here:
2. The Gene Finding Problem

We are given an unannoted genome. Think of it as a long linear chromosome.

The goal is to find those regions that code for genes.

For simplicity of exposition, let's assume that genes are really simple (eg no introns)

We can think of walking along the chromosome, annotating each position as coding (E) or non-coding (N)..
3. Hidden Markov Models (HMMs)

An HMM is a Markov Model that emits symbols at each state with different probabilities.

Let's build one for this example:

* You are at a casino and the dealer has two coins.
* One coin is fair: $\quad 50 \%$ Heads and 50% Tails.
* One coin is biased: 90% Heads and 10% Tails.

The dealer uses the following algorithm:

* 0. Pick the fair coin with 50% probability in secret.

Now repeat the following 10 times

1. Flip the coin in public and make the result visible.
2. In secret, keep the same coin with probability 80%; otherwise swap.
3. Go to Step 1.

GOAL: For each of the 10 coin tosses, guess which coin she used.

3. Hidden Markov Models (HMMs)

An HMM is a Markov Model that emits symbols at each state different probabilities.

You are at a casino and the dealer has two coins.
One coin is fair: $\quad 50 \%$ Heads and 50% Tails. ※ One coin is biased: $\quad 90 \%$ Heads and 10% Tails. *

0 . Pick the fair coin with 50% probability in secret.
Now repeat the following 10 times

1. Keep the coin in your hand with probability 80%; otherwise swap.
2. Flip the coin in public and make the result visible.
3. Go to Step 1.

GOAL: For each of the 10 coin tosses, guess which coin she used.

* Emit

A walk in an HMM from the dealers perspective:

$$
\begin{aligned}
\text { state: } F F B B \\
\text { emissions: } T H
\end{aligned}
$$

But the player sees only the emissions. States are hidden.
state:
emissions::
 guess this.
3. Hidden Markov Models (HMMs)

* Emit

Challenge \#5:

What would be your guess for states from the following emissions?
emissions: THHHTHHHHTTHAHH states:

What is the worst guess for states for the same sequence? Why did you chose it?..
3. Hidden Markov Models (HMMs)

* Emit

It's easy for the dealer to compute the probability because they know both the states and the omissions

$$
\begin{aligned}
& \operatorname{Prob}\left(\begin{array}{lllll}
\text { state: } & F & F & B & B \\
\text { emissions: } & T & H & H & H \\
H
\end{array}\right) \\
& =\operatorname{Prob}(\text { start in } F) \cdot \operatorname{Prob}(\text { emit Tin } F) \cdot \operatorname{Prob}(\text { stay state } F) \\
& \text { - Prob(emit Hin F) } \operatorname{Prob}(F \text { to B) } \\
& \text { - Prob(emit } H \text { in } B)-\operatorname{Prob}(s \operatorname{tag} \text { in } B) \\
& \text { - Prob(emit } A \text { in } B \text {) } \operatorname{Prob}(s \text { thy in } B) \\
& \text { - Prob (emit } 4 \text { in B) } \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot 0.8-\frac{1}{2} \cdot 0.2 \\
& 0.90-8 \cdot 0.9-0.8-0.9 \\
& =0.00933
\end{aligned}
$$

3. Hidden Markov Models (HMMs)

* Emit

But not easy for the player without knowing the states.....

$$
\operatorname{Prob}(\text { emissions:. } T H H H H)
$$

Already for a walk with 5 nucleotides, there are $2^{\wedge} 5$ different state combinations

$$
\begin{aligned}
& \begin{array}{l}
\text { Case 1 } \\
\operatorname{Prob}\left(\begin{array}{l}
\text { state: } \\
\text { emissions:. } \\
\text { TH H H H }
\end{array}\right. \\
\text { One of } 32 \text { passbilities } \\
\text { ale o used the } \\
\text { fair comm. }
\end{array} \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{1}{2}=\frac{1}{2} 6 \cdot\left(\frac{4}{5}\right)^{4}=0.0064
\end{aligned}
$$

3. Hidden Markov Models (HMMs)

* Emit H: 0.5

Emit H:0.9. *

There are $2^{\wedge} 5$ different possibilities (just for 5 nudectides!)
Case 1

$$
\operatorname{Prob}\left(\begin{array}{cc}
\text { state: } & F F F F F \\
\text { emissions: } & T H H H
\end{array}\right)=0.0064
$$

Case 2

$$
\operatorname{Prob}\left(\begin{array}{rl}
\text { state: } & F F F F B \\
\text { emissions: } & \text { H HHH}
\end{array}\right)=0.0029
$$

Case 2

$$
\operatorname{Crob}\binom{\text { state: }{ }^{2} \text { FF BF F }}{\operatorname{TH} H}=0.0007
$$

Case 2

$$
\operatorname{Probe}\left(\begin{array}{lllll}
\text { state: } & B & B & B & B \\
\text { emissions: } & & H & H & H
\end{array}\right)=0.0134
$$

3. Hidden Markov Models (HMMs)

Because the states are hidden from the player, the player has to consider all possibilities and choose the state sequence with the highest probability

This answer has the maximum likelihood of being correct sea. if length 5

2^{n} possibilities
$n=5, \quad 32$
We want the one with the highest probability.

Which one has max prob?
3. Hidden Markov Models (HMMs)

The Viterbi algorithm
Beyond the scope of this course
Beautiful, elegant algorithm that finds the most likely state sequence

Input: a HMM and a emission sequence
Output: a state sequence with max probability
Really fast!! One of the important algorithms known

Input:

Output:

states
3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?

"probability of stating a gene"

$$
\begin{array}{r}
W=\begin{array}{c}
\text { non-codiny } \\
\text { emissions }
\end{array} \\
\begin{array}{c}
\text { A }
\end{array} \\
C \\
G
\end{array}
$$

Does this initial probability even matter?
HINT : A chromosome might be millions of base pairs long.
3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?

$N=$ non -coding

emissions	
A	$?$
C	$?$
G	$?$
T	$?$

$\operatorname{Prob}($ start in coding E $)=0$

Nah. Start in non-coding.
3. Hidden Markov Models (HMMs) and Gene Finding

How might we set up an HMM for gene finding?

"probability of stating a gene"

For the remaining transition probabilities we need training data.
For example, if we are working with an obscure fungus, we might use a well annotated genome like Baker's yeast to estimate these parameters.

This is called a "learning set", a concept central in machine learning.
3. Hidden Markov Models (HMMs) and Gene Finding

So well studied we know
 where genes are

How do we estimate the non-coding emissions?

$$
\begin{gathered}
N=\begin{array}{c}
N o n-c o d i n y \\
\text { emissions }
\end{array} \\
A / \begin{array}{l}
N_{A} / \notin N=3 / 15 \\
C
\end{array} N_{C} / \# N=3 / 15 \\
C \\
N_{G} / \# N=5 / 15 \\
T / N T / \# N=4 / 15
\end{gathered}
$$

$$
(=15)
$$

\#N = total number of non-coding nucleotides.
$N_{A}=$ total number of non-coding $A^{\prime} s$
Same for N_{T}, N_{C}, N_{G}.
3. Hidden Markov Models (HMMs) and Gene Finding

So well studied we know
BAKER'S NNNNNEEEECNNNNNEEEEEENNN GEN
YEAST ACGTATC GAN CGTAC TCGAAA CG GGTT where genes are

Do the analogous for coding emissions,

\# $E=$ total number of coding nadeotides $(=13)$
$E_{A}=$ total number of coding $A^{\prime}:(=5)$
E_{C}, E_{G}, E_{T} analogous:
3. Hidden Markov Models (HMMs) and Gene Finding
$\overrightarrow{~ B A K E R ' S ~} \quad \begin{aligned} & \text { NNNNNEEEECNNNNNEEEEEENNN TEEN N } \\ & \text { ACGTATCGAA } C G T A C T C G A A A G G G \\ & \text { YEAST TH }\end{aligned}$
"probability of starting a gene"

$$
\begin{array}{r}
\operatorname{Prob}(N)=\frac{\not t_{0} \text { of genes }}{\text { length of }} \\
\left(=\frac{3}{28}\right)
\end{array}
$$

In other words, of all positions in the genome, only 3 start a gene.
3. Hidden Markov Models (HMMs) and Gene Finding
$\overrightarrow{~ B A K E R ' S ~} \quad \begin{aligned} & \text { NNNNNEEEECNNNNNEEEEEENNN TEEN N } \\ & \text { ACGTATCGAA } C G T A C T C G A A A G G G \\ & \text { YEAST TH }\end{aligned}$
"probability of ending agene"

$$
\operatorname{Prob}\left(E t_{0} N=\frac{\nVdash \text { of genes }}{\text { length of }}\right.
$$

$$
\left(=\frac{3}{28}\right)
$$

"For every start, there is an end and vice versa" ancient proverb
3. Hidden Markov Models (HMMs) and Gene Finding

emissions

A	$3 / 15$
C	$3 / 15$
G	$5 / 15$
T	$4 / 15$

All Done

A Apply it to ar new unannotated genome. (Homework exercise)

3. Hidden Markov Models (HMMs) and Gene Finding

Note how there are more Es in the gene region than outside. Noisy but ...

The package rhmmer gives you access to it in R. (My course uses the HMM package in R though.)

An alternative non-math and non-bio presentation for HMMs: Louis Serrano

More math-ee but still accessible: https://towardsdatascience.com/markov-chains-and-hmms-ceaf2c854788

There are more mathematically rich HMM tools (not necessarily specific to bio):

R packages: msm, depmixS4, momentuHMM
Python: scikit-learn, HMMLearn
Julia: HMMBase

RStudio learn Quiz (R, Python or Julia)

Quiz

Start Over
The following questions should help you understand if you understood the lecture material:

Which of the following statements are correct (Markov Models):

The sum of the probabilities of all transitions to a node X must sum to one.The starting state probablities must be equal.Transition probabailities may be 0 .The probability of any walk is greater than or equal to 0 .
Submit Answer

Which of the following are correct (Hidden Markov Models):

\bigcirc The emission probabilities are not necessarily equal.The same symbols must be emitted at each stateThe sum of emission probabilities at each node must sum to 1 .The most likely walk found by Viterbi is always the correct true walk.

Submit Answer

Create a random walk with the following two-state HMM (use the runif function):

```
## [1] "Transition probs: "
```

\#\# X Y
\#\# X 0.30 .2
\#\# Y 0.70 .8
\#\# [1] "Emissions:"
\#\# X Y
\#\# A $0.1 \quad 0.25$

Assignment \#4

You might consider (but it is not mandatory) using R Markdown to write your answers.
50 total marks.
Question 1 [points 10] Using the S. cerevisiae (Baker's yeast) data that we imported into R in Lectures 13 and 14, show R code of how you would estimate the frequency of A, C, G, T nucleotides in coding regions only. Use only chromosome 1.

Question 2 [points 10] Using the S. cerevisiae (Baker's yeast) data that we imported into R in Lectures 13 and 14, show R code of how you would estimate the frequency of A, C, G, T nucleotides in non-coding regions only. Use only chromosome 1. Comment on the differences bewteen the two matrices? Do you believe any observed differences are significant? Comment on how you might test significance.

Question 3 [points 20] Using the HMM package in R, implement your model. The documentation for this package is here. Note that you might want to look at the dishonestCasino() function that I wrote to help you with the concepts here. Perhaps follow the viterbi function and the example there. Show your code. Apply it back to chromosome 1. Apply it chromosome 2 too.

Questiom 4 [points 10] Compute the specificity, sensitivity and accuracy on both chromosomes individually. Comment on your findings.

Good luck!

Points of Reflection

*

Make sure that you understand the concept of searching for the most probable walk in the HMM and why using that walk is a reasonable way to "guess" the correct answer. This is a good example of mathematical optimization.

Suppose I was really interested in some kind of strange Archaea that lives on the bottom of the ocean on the side of a volcano. In fact let's suppose that it's a completely newly discovered species. Explain some of the problems that might arise using a gene finding HMM for a species that's very different from anything we've seen before.

Instead of gene finding, suppose you wanted to predict the secondary structural elements of a nascent amino acid chain. That is, do you want to be able to sub strains of the sequence the correspond to turns, helixes, and beta sheets. Describe how you would do that with an HMM. Specifically describe the structure of the HMM but also how you would learn the probabilities to parameterize the HMM.

